The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

19.8 Modules on a ringed site

Let $\mathcal{C}$ be a site. Let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}$. By analogy with More on Algebra, Section 15.54 let us try to prove that there are enough injective $\mathcal{O}$-modules. First of all, we pick an injective embedding

\[ \bigoplus \nolimits _{U, \mathcal{I}} j_{U!}\mathcal{O}_ U/\mathcal{I} \longrightarrow \mathcal{J} \]

where $\mathcal{J}$ is an injective abelian sheaf (which exists by the previous section). Here the direct sum is over all objects $U$ of $\mathcal{C}$ and over all $\mathcal{O}$-submodules $\mathcal{I} \subset j_{U!}\mathcal{O}_ U$. Please see Modules on Sites, Section 18.19 to read about the functors restriction and extension by $0$ for the localization functor $j_ U : \mathcal{C}/U \to \mathcal{C}$.

For any sheaf of $\mathcal{O}$-modules $\mathcal{F}$ denote

\[ \mathcal{F}^\vee = \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{F}, \mathcal{J}) \]

with its natural $\mathcal{O}$-module structure. Insert here future reference to internal hom. We will also need a canonical flat resolution of a sheaf of $\mathcal{O}$-modules. This we can do as follows: For any $\mathcal{O}$-module $\mathcal{F}$ we denote

\[ F(\mathcal{F}) = \bigoplus \nolimits _{U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}), s \in \mathcal{F}(U)} j_{U!}\mathcal{O}_ U. \]

This is a flat sheaf of $\mathcal{O}$-modules which comes equipped with a canonical surjection $F(\mathcal{F}) \to \mathcal{F}$, see Modules on Sites, Lemma 18.28.7. Moreover the construction $\mathcal{F} \mapsto F(\mathcal{F})$ is functorial in $\mathcal{F}$.

Lemma 19.8.1. The functor $\mathcal{F} \mapsto \mathcal{F}^\vee $ is exact.

Proof. This because $\mathcal{J}$ is an injective abelian sheaf. $\square$

There is a canonical map $ev : \mathcal{F} \to (\mathcal{F}^\vee )^\vee $ given by evaluation: given $x \in \mathcal{F}(U)$ we let $ev(x) \in (\mathcal{F}^\vee )^\vee = \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{F}^\vee , \mathcal{J})$ be the map $\varphi \mapsto \varphi (x)$.

Lemma 19.8.2. For any $\mathcal{O}$-module $\mathcal{F}$ the evaluation map $ev : \mathcal{F} \to (\mathcal{F}^\vee )^\vee $ is injective.

Proof. You can check this using the definition of $\mathcal{J}$. Namely, if $s \in \mathcal{F}(U)$ is not zero, then let $j_{U!}\mathcal{O}_ U \to \mathcal{F}$ be the map of $\mathcal{O}$-modules it corresponds to via adjunction. Let $\mathcal{I}$ be the kernel of this map. There exists a nonzero map $\mathcal{F} \supset j_{U!}\mathcal{O}_ U/\mathcal{I} \to \mathcal{J}$ which does not annihilate $s$. As $\mathcal{J}$ is an injective $\mathcal{O}$-module, this extends to a map $\varphi : \mathcal{F} \to \mathcal{J}$. Then $ev(s)(\varphi ) = \varphi (s) \not= 0$ which is what we had to prove. $\square$

The canonical surjection $F(\mathcal{F}) \to \mathcal{F}$ of $\mathcal{O}$-modules turns into a canonical injection, see above, of $\mathcal{O}$-modules

\[ (\mathcal{F}^\vee )^\vee \longrightarrow (F(\mathcal{F}^\vee ))^\vee . \]

Set $J(\mathcal{F}) = (F(\mathcal{F}^\vee ))^\vee $. The composition of $ev$ with this the displayed map gives $\mathcal{F} \to J(\mathcal{F})$ functorially in $\mathcal{F}$.

Lemma 19.8.3. Let $\mathcal{O}$ be a sheaf of rings. For every $\mathcal{O}$-module $\mathcal{F}$ the $\mathcal{O}$-module $J(\mathcal{F})$ is injective.

Proof. We have to show that the functor $\mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{G}, J(\mathcal{F}))$ is exact. Note that

\begin{eqnarray*} \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{G}, J(\mathcal{F})) & = & \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{G}, (F(\mathcal{F}^\vee ))^\vee ) \\ & = & \mathop{\mathrm{Hom}}\nolimits _\mathcal {O} (\mathcal{G}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits (F(\mathcal{F}^\vee ), \mathcal{J})) \\ & = & \mathop{\mathrm{Hom}}\nolimits (\mathcal{G} \otimes _\mathcal {O} F(\mathcal{F}^\vee ), \mathcal{J}) \end{eqnarray*}

Thus what we want follows from the fact that $F(\mathcal{F}^\vee )$ is flat and $\mathcal{J}$ is injective. $\square$

Theorem 19.8.4. Let $\mathcal{C}$ be a site. Let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}$. The category of sheaves of $\mathcal{O}$-modules on a site has enough injectives. In fact there exists a functorial injective embedding, see Homology, Definition 12.24.5.

Proof. From the discussion in this section. $\square$

Proposition 19.8.5. Let $\mathcal{C}$ be a category. Let $\mathcal{O}$ be a presheaf of rings on $\mathcal{C}$. The category $\textit{PMod}(\mathcal{O})$ of presheaves of $\mathcal{O}$-modules has functorial injective embeddings.

Proof. We could prove this along the lines of the discussion in Section 19.6. But instead we argue using the theorem above. Endow $\mathcal{C}$ with the structure of a site by letting the set of coverings of an object $U$ consist of all singletons $\{ f : V \to U\} $ where $f$ is an isomorphism. We omit the verification that this defines a site. A sheaf for this topology is the same as a presheaf (proof omitted). Hence the theorem applies. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01DQ. Beware of the difference between the letter 'O' and the digit '0'.