The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

15.54 Injective modules

Some lemmas on injective modules.

Definition 15.54.1. Let $R$ be a ring. An $R$-module $J$ is injective if and only if the functor $\mathop{\mathrm{Hom}}\nolimits _ R(-, J) : \text{Mod}_ R \to \text{Mod}_ R$ is an exact functor.

The functor $\mathop{\mathrm{Hom}}\nolimits _ R(- , M)$ is left exact for any $R$-module $M$, see Algebra, Lemma 10.10.1. Hence the condition for $J$ to be injective really signifies that given an injection of $R$-modules $M \to M'$ the map $\mathop{\mathrm{Hom}}\nolimits _ R(M', J) \to \mathop{\mathrm{Hom}}\nolimits _ R(M, J)$ is surjective.

Before we reformulate this in terms of ${Ext}$-modules we discuss the relationship between $\mathop{\mathrm{Ext}}\nolimits ^1_ R(M, N)$ and extensions as in Homology, Section 12.6.

Lemma 15.54.2. Let $R$ be a ring. Let $\mathcal{A}$ be the abelian category of $R$-modules. There is a canonical isomorphism $\mathop{\mathrm{Ext}}\nolimits _\mathcal {A}(M, N) = \text{Ext}^1_ R(M, N)$ compatible with the long exact sequences of Algebra, Lemmas 10.70.6 and 10.70.7 and the $6$-term exact sequences of Homology, Lemma 12.6.4.

Proof. Omitted. $\square$

Lemma 15.54.3. Let $R$ be a ring. Let $J$ be an $R$-module. The following are equivalent

  1. $J$ is injective,

  2. $\mathop{\mathrm{Ext}}\nolimits ^1_ R(M, J) = 0$ for every $R$-module $M$.

Proof. Let $0 \to M'' \to M' \to M \to 0$ be a short exact sequence of $R$-modules. Consider the long exact sequence

\[ \begin{matrix} 0 \to \mathop{\mathrm{Hom}}\nolimits _ R(M, J) \to \mathop{\mathrm{Hom}}\nolimits _ R(M', J) \to \mathop{\mathrm{Hom}}\nolimits _ R(M'', J) \\ \phantom{0\ } \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M, J) \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M', J) \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M'', J) \to \ldots \end{matrix} \]

of Algebra, Lemma 10.70.7. Thus we see that (2) implies (1). Conversely, if $J$ is injective then the $\mathop{\mathrm{Ext}}\nolimits $-group is zero by Homology, Lemma 12.24.2 and Lemma 15.54.2. $\square$

Lemma 15.54.4. Let $R$ be a ring. Let $J$ be an $R$-module. The following are equivalent

  1. $J$ is injective,

  2. $\mathop{\mathrm{Ext}}\nolimits ^1_ R(R/I, J) = 0$ for every ideal $I \subset R$, and

  3. for an ideal $I \subset R$ and module map $I \to J$ there exists an extension $R \to J$.

Proof. We have seen the implication (1) $\Leftrightarrow $ (2) in Lemma 15.54.3. In this proof we will show that (1) $\Leftrightarrow $ (3) which is known as Baer's criterion.

Assume (1). Given a module map $I \to J$ as in (3) we find the extension $R \to J$ because the map $\mathop{\mathrm{Hom}}\nolimits _ R(R, J) \to \mathop{\mathrm{Hom}}\nolimits _ R(I, J)$ is surjective by definition.

Assume (3). Let $M \subset N$ be an inclusion of $R$-modules. Let $\varphi : M \to J$ be a homomorphism. We will show that $\varphi $ extends to $N$ which finishes the proof of the lemma. Consider the set of homomorphisms $\varphi ' : M' \to J$ with $M \subset M' \subset N$ and $\varphi '|_ M = \varphi $. Define $(M', \varphi ') \geq (M'', \varphi '')$ if and only if $M' \supset M''$ and $\varphi '|_{M''} = \varphi ''$. If $(M_ i, \varphi _ i)_{i \in I}$ is a totally ordered collection of such pairs, then we obtain a map $\bigcup _{i \in I} M_ i \to J$ defined by $a \in M_ i$ maps to $\varphi _ i(a)$. Thus Zorn's lemma applies. To conclude we have to show that if the pair $(M', \varphi ')$ is maximal then $M' = N$. In other words, it suffices to show, given any subgroup $M \subset N$, $M \not= N$ and any $\varphi : M \to J$, then we can find $\varphi ' : M' \to J$ with $M \subset M' \subset N$ such that (a) the inclusion $M \subset M'$ is strict, and (b) the morphism $\varphi '$ extends $\varphi $.

To prove this, pick $x \in N$, $x \not\in M$. Let $I = \{ f \in R \mid fx \in M\} $. This is an ideal of $R$. Define a homomorphism $\psi : I \to J$ by $f \mapsto \varphi (fx)$. Extend to a map $\tilde\psi : R \to J$ which is possible by assumption (3). By our choice of $I$ the kernel of $M \oplus R \to J$, $(y, f) \mapsto y - \tilde\psi (f)$ contains the kernel of the map $M \oplus R \to N$, $(y, f) \mapsto y + fx$. Hence this homomorphism factors through the image $M' = M + Rx$ and this extends the given homomorphism as desired. $\square$

In the rest of this section we prove that there are enough injective modules over a ring $R$. We start with the fact that $\mathbf{Q}/\mathbf{Z}$ is an injective abelian group. This follows from Lemma 15.53.1.

Definition 15.54.5. Let $R$ be a ring.

  1. For any $R$-module $M$ over $R$ we denote $M^\vee = \mathop{\mathrm{Hom}}\nolimits (M, \mathbf{Q}/\mathbf{Z})$ with its natural $R$-module structure. We think of $M \mapsto M^\vee $ as a contravariant functor from the category of $R$-modules to itself.

  2. For any $R$-module $M$ we denote

    \[ F(M) = \bigoplus \nolimits _{m \in M} R[m] \]

    the free module with basis given by the elements $[m]$ with $m \in M$. We let $F(M)\to M$, $\sum f_ i [m_ i] \mapsto \sum f_ i m_ i$ be the natural surjection of $R$-modules. We think of $M \mapsto (F(M) \to M)$ as a functor from the category of $R$-modules to the category of arrows in $R$-modules.

Lemma 15.54.6. Let $R$ be a ring. The functor $M \mapsto M^\vee $ is exact.

Proof. This because $\mathbf{Q}/\mathbf{Z}$ is an injective abelian group by Lemma 15.53.1. $\square$

There is a canonical map $ev : M \to (M^\vee )^\vee $ given by evaluation: given $x \in M$ we let $ev(x) \in (M^\vee )^\vee = \mathop{\mathrm{Hom}}\nolimits (M^\vee , \mathbf{Q}/\mathbf{Z})$ be the map $\varphi \mapsto \varphi (x)$.

Lemma 15.54.7. For any $R$-module $M$ the evaluation map $ev : M \to (M^\vee )^\vee $ is injective.

Proof. You can check this using that $\mathbf{Q}/\mathbf{Z}$ is an injective abelian group. Namely, if $x \in M$ is not zero, then let $M' \subset M$ be the cyclic group it generates. There exists a nonzero map $M' \to \mathbf{Q}/\mathbf{Z}$ which necessarily does not annihilate $x$. This extends to a map $\varphi : M \to \mathbf{Q}/\mathbf{Z}$ and then $ev(x)(\varphi ) = \varphi (x) \not= 0$. $\square$

The canonical surjection $F(M) \to M$ of $R$-modules turns into a canonical injection, see above, of $R$-modules

\[ (M^\vee )^\vee \longrightarrow (F(M^\vee ))^\vee . \]

Set $J(M) = (F(M^\vee ))^\vee $. The composition of $ev$ with this the displayed map gives $M \to J(M)$ functorially in $M$.

Lemma 15.54.8. Let $R$ be a ring. For every $R$-module $M$ the $R$-module $J(M)$ is injective.

Proof. Note that $J(M) \cong \prod _{\varphi \in M^\vee } R^\vee $ as an $R$-module. As the product of injective modules is injective, it suffices to show that $R^\vee $ is injective. For this we use that

\[ \mathop{\mathrm{Hom}}\nolimits _ R(N, R^\vee ) = \mathop{\mathrm{Hom}}\nolimits _ R(N, \mathop{\mathrm{Hom}}\nolimits _{\mathbf{Z}}(R, \mathbf{Q}/\mathbf{Z})) = N^\vee \]

and the fact that $(-)^\vee $ is an exact functor by Lemma 15.54.6. $\square$

Lemma 15.54.9. Let $R$ be a ring. The construction above defines a covariant functor $M \mapsto (M \to J(M))$ from the category of $R$-modules to the category of arrows of $R$-modules such that for every module $M$ the output $M \to J(M)$ is an injective map of $M$ into an injective $R$-module $J(M)$.

Proof. Follows from the above. $\square$

In particular, for any map of $R$-modules $M \to N$ there is an associated morphism $J(M) \to J(N)$ making the following diagram commute:

\[ \xymatrix{ M \ar[d] \ar[r] & N \ar[d] \\ J(M) \ar[r] & J(N) } \]

This is the kind of construction we would like to have in general. In Homology, Section 12.24 we introduced terminology to express this. Namely, we say this means that the category of $R$-modules has functorial injective embeddings.


Comments (4)

Comment #112 by Kiran Kedlaya on

In the proof of Lemma 15.54.8, I think is a typo for .

Comment #349 by Fan on

The first sentence in the last paragraph:

"This the kind of construction we would like to have in general." missing "is"?


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01D8. Beware of the difference between the letter 'O' and the digit '0'.