Lemma 15.55.3. Let $R$ be a ring. Let $J$ be an $R$-module. The following are equivalent

$J$ is injective,

$\mathop{\mathrm{Ext}}\nolimits ^1_ R(M, J) = 0$ for every $R$-module $M$.

Lemma 15.55.3. Let $R$ be a ring. Let $J$ be an $R$-module. The following are equivalent

$J$ is injective,

$\mathop{\mathrm{Ext}}\nolimits ^1_ R(M, J) = 0$ for every $R$-module $M$.

**Proof.**
Let $0 \to M'' \to M' \to M \to 0$ be a short exact sequence of $R$-modules. Consider the long exact sequence

\[ \begin{matrix} 0 \to \mathop{\mathrm{Hom}}\nolimits _ R(M, J) \to \mathop{\mathrm{Hom}}\nolimits _ R(M', J) \to \mathop{\mathrm{Hom}}\nolimits _ R(M'', J)
\\ \phantom{0\ } \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M, J) \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M', J) \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M'', J) \to \ldots
\end{matrix} \]

of Algebra, Lemma 10.71.7. Thus we see that (2) implies (1). Conversely, if $J$ is injective then the $\mathop{\mathrm{Ext}}\nolimits $-group is zero by Homology, Lemma 12.27.2 and Lemma 15.55.2. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: