The Stacks project

Lemma 10.71.7. Let $R$ be a ring. Let $N$ be an $R$-module. Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequence. Then we get a long exact sequence

\[ \begin{matrix} 0 \to \mathop{\mathrm{Hom}}\nolimits _ R(M'', N) \to \mathop{\mathrm{Hom}}\nolimits _ R(M, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(M', N) \\ \phantom{0\ } \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M'', N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M, N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M', N) \to \ldots \end{matrix} \]

Proof. Pick sets of generators $\{ m'_{i'}\} _{i' \in I'}$ and $\{ m''_{i''}\} _{i'' \in I''}$ of $M'$ and $M''$. For each $i'' \in I''$ choose a lift $\tilde m''_{i''} \in M$ of the element $m''_{i''} \in M''$. Set $F' = \bigoplus _{i' \in I'} R$, $F'' = \bigoplus _{i'' \in I''} R$ and $F = F' \oplus F''$. Mapping the generators of these free modules to the corresponding chosen generators gives surjective $R$-module maps $F' \to M'$, $F'' \to M''$, and $F \to M$. We obtain a map of short exact sequences

\[ \begin{matrix} 0 & \to & M' & \to & M & \to & M'' & \to & 0 \\ & & \uparrow & & \uparrow & & \uparrow \\ 0 & \to & F' & \to & F & \to & F'' & \to & 0 \\ \end{matrix} \]

By the snake lemma we see that the sequence of kernels $0 \to K' \to K \to K'' \to 0$ is short exact sequence of $R$-modules. Hence we can continue this process indefinitely. In other words we obtain a short exact sequence of resolutions fitting into the diagram

\[ \begin{matrix} 0 & \to & M' & \to & M & \to & M'' & \to & 0 \\ & & \uparrow & & \uparrow & & \uparrow \\ 0 & \to & F_\bullet ' & \to & F_\bullet & \to & F_\bullet '' & \to & 0 \\ \end{matrix} \]

Because each of the sequences $0 \to F'_ n \to F_ n \to F''_ n \to 0$ is split exact (by construction) we obtain a short exact sequence of complexes

\[ 0 \to \mathop{\mathrm{Hom}}\nolimits _ R(F''_{\bullet }, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(F_{\bullet }, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(F'_{\bullet }, N) \to 0 \]

by applying the $\mathop{\mathrm{Hom}}\nolimits _ R(-, N)$ functor. Thus we get the long exact sequence from the snake lemma applied to this. $\square$

Comments (0)

There are also:

  • 1 comment(s) on Section 10.71: Ext groups

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 065P. Beware of the difference between the letter 'O' and the digit '0'.