Processing math: 100%

The Stacks project

Lemma 10.71.7. Let R be a ring. Let N be an R-module. Let 0 \to M' \to M \to M'' \to 0 be a short exact sequence. Then we get a long exact sequence

\begin{matrix} 0 \to \mathop{\mathrm{Hom}}\nolimits _ R(M'', N) \to \mathop{\mathrm{Hom}}\nolimits _ R(M, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(M', N) \\ \phantom{0\ } \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M'', N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M, N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M', N) \to \ldots \end{matrix}

Proof. Pick sets of generators \{ m'_{i'}\} _{i' \in I'} and \{ m''_{i''}\} _{i'' \in I''} of M' and M''. For each i'' \in I'' choose a lift \tilde m''_{i''} \in M of the element m''_{i''} \in M''. Set F' = \bigoplus _{i' \in I'} R, F'' = \bigoplus _{i'' \in I''} R and F = F' \oplus F''. Mapping the generators of these free modules to the corresponding chosen generators gives surjective R-module maps F' \to M', F'' \to M'', and F \to M. We obtain a map of short exact sequences

\begin{matrix} 0 & \to & M' & \to & M & \to & M'' & \to & 0 \\ & & \uparrow & & \uparrow & & \uparrow \\ 0 & \to & F' & \to & F & \to & F'' & \to & 0 \\ \end{matrix}

By the snake lemma we see that the sequence of kernels 0 \to K' \to K \to K'' \to 0 is short exact sequence of R-modules. Hence we can continue this process indefinitely. In other words we obtain a short exact sequence of resolutions fitting into the diagram

\begin{matrix} 0 & \to & M' & \to & M & \to & M'' & \to & 0 \\ & & \uparrow & & \uparrow & & \uparrow \\ 0 & \to & F_\bullet ' & \to & F_\bullet & \to & F_\bullet '' & \to & 0 \\ \end{matrix}

Because each of the sequences 0 \to F'_ n \to F_ n \to F''_ n \to 0 is split exact (by construction) we obtain a short exact sequence of complexes

0 \to \mathop{\mathrm{Hom}}\nolimits _ R(F''_{\bullet }, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(F_{\bullet }, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(F'_{\bullet }, N) \to 0

by applying the \mathop{\mathrm{Hom}}\nolimits _ R(-, N) functor. Thus we get the long exact sequence from the snake lemma applied to this. \square


Comments (0)

There are also:

  • 1 comment(s) on Section 10.71: Ext groups

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.