Loading web-font TeX/Math/Italic

The Stacks project

10.71 Ext groups

In this section we do a tiny bit of homological algebra, in order to establish some fundamental properties of depth over Noetherian local rings.

Lemma 10.71.1. Let R be a ring. Let M be an R-module.

  1. There exists an exact complex

    \ldots \to F_2 \to F_1 \to F_0 \to M \to 0.

    with F_ i free R-modules.

  2. If R is Noetherian and M finite over R, then we can choose the complex such that F_ i is finite free. In other words, we can find an exact complex

    \ldots \to R^{\oplus n_2} \to R^{\oplus n_1} \to R^{\oplus n_0} \to M \to 0.

Proof. Let us explain only the Noetherian case. As a first step choose a surjection R^{n_0} \to M. Then having constructed an exact complex of length e we simply choose a surjection R^{n_{e + 1}} \to \mathop{\mathrm{Ker}}(R^{n_ e} \to R^{n_{e-1}}) which is possible because R is Noetherian. \square

Definition 10.71.2. Let R be a ring. Let M be an R-module.

  1. A (left) resolution F_\bullet \to M of M is an exact complex

    \ldots \to F_2 \to F_1 \to F_0 \to M \to 0

    of R-modules.

  2. A resolution of M by free R-modules is a resolution F_\bullet \to M where each F_ i is a free R-module.

  3. A resolution of M by finite free R-modules is a resolution F_\bullet \to M where each F_ i is a finite free R-module.

We often use the notation F_{\bullet } to denote a complex of R-modules

\ldots \to F_ i \to F_{i-1} \to \ldots

In this case we often use d_ i or d_{F, i} to denote the map F_ i \to F_{i-1}. In this section we are always going to assume that F_0 is the last nonzero term in the complex. The ith homology group of the complex F_{\bullet } is the group H_ i = \mathop{\mathrm{Ker}}(d_{F, i})/\mathop{\mathrm{Im}}(d_{F, i + 1}). A map of complexes \alpha : F_{\bullet } \to G_{\bullet } is given by maps \alpha _ i : F_ i \to G_ i such that \alpha _{i-1} \circ d_{F, i} = d_{G, i-1} \circ \alpha _ i. Such a map induces a map on homology H_ i(\alpha ) : H_ i(F_{\bullet }) \to H_ i(G_{\bullet }). If \alpha , \beta : F_{\bullet } \to G_{\bullet } are maps of complexes, then a homotopy between \alpha and \beta is given by a collection of maps h_ i : F_ i \to G_{i + 1} such that \alpha _ i - \beta _ i = d_{G, i + 1} \circ h_ i + h_{i-1} \circ d_{F, i}. Two maps \alpha , \beta : F_{\bullet } \to G_{\bullet } are said to be homotopic if a homotopy between \alpha and \beta exists.

We will use a very similar notation regarding complexes of the form F^{\bullet } which look like

\ldots \to F^ i \xrightarrow {d^ i} F^{i + 1} \to \ldots

There are maps of complexes, homotopies, etc. In this case we set H^ i(F^{\bullet }) = \mathop{\mathrm{Ker}}(d^ i)/\mathop{\mathrm{Im}}(d^{i - 1}) and we call it the ith cohomology group.

Lemma 10.71.3. Any two homotopic maps of complexes induce the same maps on (co)homology groups.

Proof. Omitted. \square

Lemma 10.71.4. Let R be a ring. Let M \to N be a map of R-modules. Let N_\bullet \to N be an arbitrary resolution. Let

\ldots \to F_2 \to F_1 \to F_0 \to M

be a complex of R-modules where each F_ i is a free R-module. Then

  1. there exists a map of complexes F_\bullet \to N_\bullet such that

    \xymatrix{ F_0 \ar[r] \ar[d] & M \ar[d] \\ N_0 \ar[r] & N }

    is commutative, and

  2. any two maps \alpha , \beta : F_\bullet \to N_\bullet as in (1) are homotopic.

Proof. Proof of (1). Because F_0 is free we can find a map F_0 \to N_0 lifting the map F_0 \to M \to N. We obtain an induced map F_1 \to F_0 \to N_0 which ends up in the image of N_1 \to N_0. Since F_1 is free we may lift this to a map F_1 \to N_1. This in turn induces a map F_2 \to F_1 \to N_1 which maps to zero into N_0. Since N_\bullet is exact we see that the image of this map is contained in the image of N_2 \to N_1. Hence we may lift to get a map F_2 \to N_2. Repeat.

Proof of (2). To show that \alpha , \beta are homotopic it suffices to show the difference \gamma = \alpha - \beta is homotopic to zero. Note that the image of \gamma _0 : F_0 \to N_0 is contained in the image of N_1 \to N_0. Hence we may lift \gamma _0 to a map h_0 : F_0 \to N_1. Consider the map \gamma _1' = \gamma _1 - h_0 \circ d_{F, 1}. By our choice of h_0 we see that the image of \gamma _1' is contained in the kernel of N_1 \to N_0. Since N_\bullet is exact we may lift \gamma _1' to a map h_1 : F_1 \to N_2. At this point we have \gamma _1 = h_0 \circ d_{F, 1} + d_{N, 2} \circ h_1. Repeat. \square

At this point we are ready to define the groups \mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N). Namely, choose a resolution F_{\bullet } of M by free R-modules, see Lemma 10.71.1. Consider the (cohomological) complex

\mathop{\mathrm{Hom}}\nolimits _ R(F_\bullet , N) : \mathop{\mathrm{Hom}}\nolimits _ R(F_0, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(F_1, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(F_2, N) \to \ldots

We define \mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N) for i \geq 0 to be the ith cohomology group of this complex1. For i < 0 we set \mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N) = 0. Before we continue we point out that

\mathop{\mathrm{Ext}}\nolimits ^0_ R(M, N) = \mathop{\mathrm{Ker}}(\mathop{\mathrm{Hom}}\nolimits _ R(F_0, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(F_1, N)) = \mathop{\mathrm{Hom}}\nolimits _ R(M, N)

because we can apply part (1) of Lemma 10.10.1 to the exact sequence F_1 \to F_0 \to M \to 0. The following lemma explains in what sense this is well defined.

Lemma 10.71.5. Let R be a ring. Let M_1, M_2, N be R-modules. Suppose that F_{\bullet } is a free resolution of the module M_1, and G_{\bullet } is a free resolution of the module M_2. Let \varphi : M_1 \to M_2 be a module map. Let \alpha : F_{\bullet } \to G_{\bullet } be a map of complexes inducing \varphi on M_1 = \mathop{\mathrm{Coker}}(d_{F, 1}) \to M_2 = \mathop{\mathrm{Coker}}(d_{G, 1}), see Lemma 10.71.4. Then the induced maps

H^ i(\alpha ) : H^ i(\mathop{\mathrm{Hom}}\nolimits _ R(F_{\bullet }, N)) \longrightarrow H^ i(\mathop{\mathrm{Hom}}\nolimits _ R(G_{\bullet }, N))

are independent of the choice of \alpha . If \varphi is an isomorphism, so are all the maps H^ i(\alpha ). If M_1 = M_2, F_\bullet = G_\bullet , and \varphi is the identity, so are all the maps H_ i(\alpha ).

Proof. Another map \beta : F_{\bullet } \to G_{\bullet } inducing \varphi is homotopic to \alpha by Lemma 10.71.4. Hence the maps \mathop{\mathrm{Hom}}\nolimits _ R(F_\bullet , N) \to \mathop{\mathrm{Hom}}\nolimits _ R(G_\bullet , N) are homotopic. Hence the independence result follows from Lemma 10.71.3.

Suppose that \varphi is an isomorphism. Let \psi : M_2 \to M_1 be an inverse. Choose \beta : G_{\bullet } \to F_{\bullet } be a map inducing \psi : M_2 = \mathop{\mathrm{Coker}}(d_{G, 1}) \to M_1 = \mathop{\mathrm{Coker}}(d_{F, 1}), see Lemma 10.71.4. OK, and now consider the map H^ i(\alpha ) \circ H^ i(\beta ) = H^ i(\alpha \circ \beta ). By the above the map H^ i(\alpha \circ \beta ) is the same as the map H^ i(\text{id}_{G_{\bullet }}) = \text{id}. Similarly for the composition H^ i(\beta ) \circ H^ i(\alpha ). Hence H^ i(\alpha ) and H^ i(\beta ) are inverses of each other. \square

Lemma 10.71.6. Let R be a ring. Let M be an R-module. Let 0 \to N' \to N \to N'' \to 0 be a short exact sequence. Then we get a long exact sequence

\begin{matrix} 0 \to \mathop{\mathrm{Hom}}\nolimits _ R(M, N') \to \mathop{\mathrm{Hom}}\nolimits _ R(M, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(M, N'') \\ \phantom{0\ } \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M, N') \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M, N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M, N'') \to \ldots \end{matrix}

Proof. Pick a free resolution F_{\bullet } \to M. Since each of the F_ i are free we see that we get a short exact sequence of complexes

0 \to \mathop{\mathrm{Hom}}\nolimits _ R(F_{\bullet }, N') \to \mathop{\mathrm{Hom}}\nolimits _ R(F_{\bullet }, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(F_{\bullet }, N'') \to 0

Thus we get the long exact sequence from the snake lemma applied to this. \square

Lemma 10.71.7. Let R be a ring. Let N be an R-module. Let 0 \to M' \to M \to M'' \to 0 be a short exact sequence. Then we get a long exact sequence

\begin{matrix} 0 \to \mathop{\mathrm{Hom}}\nolimits _ R(M'', N) \to \mathop{\mathrm{Hom}}\nolimits _ R(M, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(M', N) \\ \phantom{0\ } \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M'', N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M, N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M', N) \to \ldots \end{matrix}

Proof. Pick sets of generators \{ m'_{i'}\} _{i' \in I'} and \{ m''_{i''}\} _{i'' \in I''} of M' and M''. For each i'' \in I'' choose a lift \tilde m''_{i''} \in M of the element m''_{i''} \in M''. Set F' = \bigoplus _{i' \in I'} R, F'' = \bigoplus _{i'' \in I''} R and F = F' \oplus F''. Mapping the generators of these free modules to the corresponding chosen generators gives surjective R-module maps F' \to M', F'' \to M'', and F \to M. We obtain a map of short exact sequences

\begin{matrix} 0 & \to & M' & \to & M & \to & M'' & \to & 0 \\ & & \uparrow & & \uparrow & & \uparrow \\ 0 & \to & F' & \to & F & \to & F'' & \to & 0 \\ \end{matrix}

By the snake lemma we see that the sequence of kernels 0 \to K' \to K \to K'' \to 0 is short exact sequence of R-modules. Hence we can continue this process indefinitely. In other words we obtain a short exact sequence of resolutions fitting into the diagram

\begin{matrix} 0 & \to & M' & \to & M & \to & M'' & \to & 0 \\ & & \uparrow & & \uparrow & & \uparrow \\ 0 & \to & F_\bullet ' & \to & F_\bullet & \to & F_\bullet '' & \to & 0 \\ \end{matrix}

Because each of the sequences 0 \to F'_ n \to F_ n \to F''_ n \to 0 is split exact (by construction) we obtain a short exact sequence of complexes

0 \to \mathop{\mathrm{Hom}}\nolimits _ R(F''_{\bullet }, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(F_{\bullet }, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(F'_{\bullet }, N) \to 0

by applying the \mathop{\mathrm{Hom}}\nolimits _ R(-, N) functor. Thus we get the long exact sequence from the snake lemma applied to this. \square

Lemma 10.71.8. Let R be a ring. Let M, N be R-modules. Any x\in R such that either xN = 0, or xM = 0 annihilates each of the modules \mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N).

Proof. Pick a free resolution F_{\bullet } of M. Since \mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N) is defined as the cohomology of the complex \mathop{\mathrm{Hom}}\nolimits _ R(F_{\bullet }, N) the lemma is clear when xN = 0. If xM = 0, then we see that multiplication by x on F_{\bullet } lifts the zero map on M. Hence by Lemma 10.71.5 we see that it induces the same map on Ext groups as the zero map. \square

Lemma 10.71.9. Let R be a Noetherian ring. Let M, N be finite R-modules. Then \mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N) is a finite R-module for all i.

Proof. This holds because \mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N) is computed as the cohomology groups of a complex \mathop{\mathrm{Hom}}\nolimits _ R(F_\bullet , N) with each F_ n a finite free R-module, see Lemma 10.71.1. \square

[1] At this point it would perhaps be more appropriate to say “an” in stead of “the” Ext-group.

Comments (1)

Comment #682 by Keenan Kidwell on

In the proof of 00LW, isn't the argument sort of set up to induct on depth, instead of dimension (not to say one couldn't induct on dimension, but it seems to me to make more sense to induct on depth since the induction hypothesis applies to to show that , so .


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.