10.71 Ext groups
In this section we do a tiny bit of homological algebra, in order to establish some fundamental properties of depth over Noetherian local rings.
Lemma 10.71.1. Let R be a ring. Let M be an R-module.
There exists an exact complex
\ldots \to F_2 \to F_1 \to F_0 \to M \to 0.
with F_ i free R-modules.
If R is Noetherian and M finite over R, then we can choose the complex such that F_ i is finite free. In other words, we can find an exact complex
\ldots \to R^{\oplus n_2} \to R^{\oplus n_1} \to R^{\oplus n_0} \to M \to 0.
Proof.
Let us explain only the Noetherian case. As a first step choose a surjection R^{n_0} \to M. Then having constructed an exact complex of length e we simply choose a surjection R^{n_{e + 1}} \to \mathop{\mathrm{Ker}}(R^{n_ e} \to R^{n_{e-1}}) which is possible because R is Noetherian.
\square
Definition 10.71.2. Let R be a ring. Let M be an R-module.
A (left) resolution F_\bullet \to M of M is an exact complex
\ldots \to F_2 \to F_1 \to F_0 \to M \to 0
of R-modules.
A resolution of M by free R-modules is a resolution F_\bullet \to M where each F_ i is a free R-module.
A resolution of M by finite free R-modules is a resolution F_\bullet \to M where each F_ i is a finite free R-module.
We often use the notation F_{\bullet } to denote a complex of R-modules
\ldots \to F_ i \to F_{i-1} \to \ldots
In this case we often use d_ i or d_{F, i} to denote the map F_ i \to F_{i-1}. In this section we are always going to assume that F_0 is the last nonzero term in the complex. The ith homology group of the complex F_{\bullet } is the group H_ i = \mathop{\mathrm{Ker}}(d_{F, i})/\mathop{\mathrm{Im}}(d_{F, i + 1}). A map of complexes \alpha : F_{\bullet } \to G_{\bullet } is given by maps \alpha _ i : F_ i \to G_ i such that \alpha _{i-1} \circ d_{F, i} = d_{G, i-1} \circ \alpha _ i. Such a map induces a map on homology H_ i(\alpha ) : H_ i(F_{\bullet }) \to H_ i(G_{\bullet }). If \alpha , \beta : F_{\bullet } \to G_{\bullet } are maps of complexes, then a homotopy between \alpha and \beta is given by a collection of maps h_ i : F_ i \to G_{i + 1} such that \alpha _ i - \beta _ i = d_{G, i + 1} \circ h_ i + h_{i-1} \circ d_{F, i}. Two maps \alpha , \beta : F_{\bullet } \to G_{\bullet } are said to be homotopic if a homotopy between \alpha and \beta exists.
We will use a very similar notation regarding complexes of the form F^{\bullet } which look like
\ldots \to F^ i \xrightarrow {d^ i} F^{i + 1} \to \ldots
There are maps of complexes, homotopies, etc. In this case we set H^ i(F^{\bullet }) = \mathop{\mathrm{Ker}}(d^ i)/\mathop{\mathrm{Im}}(d^{i - 1}) and we call it the ith cohomology group.
Lemma 10.71.3. Any two homotopic maps of complexes induce the same maps on (co)homology groups.
Proof.
Omitted.
\square
Lemma 10.71.4. Let R be a ring. Let M \to N be a map of R-modules. Let N_\bullet \to N be an arbitrary resolution. Let
\ldots \to F_2 \to F_1 \to F_0 \to M
be a complex of R-modules where each F_ i is a free R-module. Then
there exists a map of complexes F_\bullet \to N_\bullet such that
\xymatrix{ F_0 \ar[r] \ar[d] & M \ar[d] \\ N_0 \ar[r] & N }
is commutative, and
any two maps \alpha , \beta : F_\bullet \to N_\bullet as in (1) are homotopic.
Proof.
Proof of (1). Because F_0 is free we can find a map F_0 \to N_0 lifting the map F_0 \to M \to N. We obtain an induced map F_1 \to F_0 \to N_0 which ends up in the image of N_1 \to N_0. Since F_1 is free we may lift this to a map F_1 \to N_1. This in turn induces a map F_2 \to F_1 \to N_1 which maps to zero into N_0. Since N_\bullet is exact we see that the image of this map is contained in the image of N_2 \to N_1. Hence we may lift to get a map F_2 \to N_2. Repeat.
Proof of (2). To show that \alpha , \beta are homotopic it suffices to show the difference \gamma = \alpha - \beta is homotopic to zero. Note that the image of \gamma _0 : F_0 \to N_0 is contained in the image of N_1 \to N_0. Hence we may lift \gamma _0 to a map h_0 : F_0 \to N_1. Consider the map \gamma _1' = \gamma _1 - h_0 \circ d_{F, 1}. By our choice of h_0 we see that the image of \gamma _1' is contained in the kernel of N_1 \to N_0. Since N_\bullet is exact we may lift \gamma _1' to a map h_1 : F_1 \to N_2. At this point we have \gamma _1 = h_0 \circ d_{F, 1} + d_{N, 2} \circ h_1. Repeat.
\square
At this point we are ready to define the groups \mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N). Namely, choose a resolution F_{\bullet } of M by free R-modules, see Lemma 10.71.1. Consider the (cohomological) complex
\mathop{\mathrm{Hom}}\nolimits _ R(F_\bullet , N) : \mathop{\mathrm{Hom}}\nolimits _ R(F_0, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(F_1, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(F_2, N) \to \ldots
We define \mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N) for i \geq 0 to be the ith cohomology group of this complex1. For i < 0 we set \mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N) = 0. Before we continue we point out that
\mathop{\mathrm{Ext}}\nolimits ^0_ R(M, N) = \mathop{\mathrm{Ker}}(\mathop{\mathrm{Hom}}\nolimits _ R(F_0, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(F_1, N)) = \mathop{\mathrm{Hom}}\nolimits _ R(M, N)
because we can apply part (1) of Lemma 10.10.1 to the exact sequence F_1 \to F_0 \to M \to 0. The following lemma explains in what sense this is well defined.
Lemma 10.71.5. Let R be a ring. Let M_1, M_2, N be R-modules. Suppose that F_{\bullet } is a free resolution of the module M_1, and G_{\bullet } is a free resolution of the module M_2. Let \varphi : M_1 \to M_2 be a module map. Let \alpha : F_{\bullet } \to G_{\bullet } be a map of complexes inducing \varphi on M_1 = \mathop{\mathrm{Coker}}(d_{F, 1}) \to M_2 = \mathop{\mathrm{Coker}}(d_{G, 1}), see Lemma 10.71.4. Then the induced maps
H^ i(\alpha ) : H^ i(\mathop{\mathrm{Hom}}\nolimits _ R(F_{\bullet }, N)) \longrightarrow H^ i(\mathop{\mathrm{Hom}}\nolimits _ R(G_{\bullet }, N))
are independent of the choice of \alpha . If \varphi is an isomorphism, so are all the maps H^ i(\alpha ). If M_1 = M_2, F_\bullet = G_\bullet , and \varphi is the identity, so are all the maps H_ i(\alpha ).
Proof.
Another map \beta : F_{\bullet } \to G_{\bullet } inducing \varphi is homotopic to \alpha by Lemma 10.71.4. Hence the maps \mathop{\mathrm{Hom}}\nolimits _ R(F_\bullet , N) \to \mathop{\mathrm{Hom}}\nolimits _ R(G_\bullet , N) are homotopic. Hence the independence result follows from Lemma 10.71.3.
Suppose that \varphi is an isomorphism. Let \psi : M_2 \to M_1 be an inverse. Choose \beta : G_{\bullet } \to F_{\bullet } be a map inducing \psi : M_2 = \mathop{\mathrm{Coker}}(d_{G, 1}) \to M_1 = \mathop{\mathrm{Coker}}(d_{F, 1}), see Lemma 10.71.4. OK, and now consider the map H^ i(\alpha ) \circ H^ i(\beta ) = H^ i(\alpha \circ \beta ). By the above the map H^ i(\alpha \circ \beta ) is the same as the map H^ i(\text{id}_{G_{\bullet }}) = \text{id}. Similarly for the composition H^ i(\beta ) \circ H^ i(\alpha ). Hence H^ i(\alpha ) and H^ i(\beta ) are inverses of each other.
\square
Lemma 10.71.6. Let R be a ring. Let M be an R-module. Let 0 \to N' \to N \to N'' \to 0 be a short exact sequence. Then we get a long exact sequence
\begin{matrix} 0 \to \mathop{\mathrm{Hom}}\nolimits _ R(M, N') \to \mathop{\mathrm{Hom}}\nolimits _ R(M, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(M, N'')
\\ \phantom{0\ } \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M, N') \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M, N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M, N'') \to \ldots
\end{matrix}
Proof.
Pick a free resolution F_{\bullet } \to M. Since each of the F_ i are free we see that we get a short exact sequence of complexes
0 \to \mathop{\mathrm{Hom}}\nolimits _ R(F_{\bullet }, N') \to \mathop{\mathrm{Hom}}\nolimits _ R(F_{\bullet }, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(F_{\bullet }, N'') \to 0
Thus we get the long exact sequence from the snake lemma applied to this.
\square
Lemma 10.71.7. Let R be a ring. Let N be an R-module. Let 0 \to M' \to M \to M'' \to 0 be a short exact sequence. Then we get a long exact sequence
\begin{matrix} 0 \to \mathop{\mathrm{Hom}}\nolimits _ R(M'', N) \to \mathop{\mathrm{Hom}}\nolimits _ R(M, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(M', N)
\\ \phantom{0\ } \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M'', N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M, N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(M', N) \to \ldots
\end{matrix}
Proof.
Pick sets of generators \{ m'_{i'}\} _{i' \in I'} and \{ m''_{i''}\} _{i'' \in I''} of M' and M''. For each i'' \in I'' choose a lift \tilde m''_{i''} \in M of the element m''_{i''} \in M''. Set F' = \bigoplus _{i' \in I'} R, F'' = \bigoplus _{i'' \in I''} R and F = F' \oplus F''. Mapping the generators of these free modules to the corresponding chosen generators gives surjective R-module maps F' \to M', F'' \to M'', and F \to M. We obtain a map of short exact sequences
\begin{matrix} 0
& \to
& M'
& \to
& M
& \to
& M''
& \to
& 0
\\ & & \uparrow
& & \uparrow
& & \uparrow
\\ 0
& \to
& F'
& \to
& F
& \to
& F''
& \to
& 0
\\ \end{matrix}
By the snake lemma we see that the sequence of kernels 0 \to K' \to K \to K'' \to 0 is short exact sequence of R-modules. Hence we can continue this process indefinitely. In other words we obtain a short exact sequence of resolutions fitting into the diagram
\begin{matrix} 0
& \to
& M'
& \to
& M
& \to
& M''
& \to
& 0
\\ & & \uparrow
& & \uparrow
& & \uparrow
\\ 0
& \to
& F_\bullet '
& \to
& F_\bullet
& \to
& F_\bullet ''
& \to
& 0
\\ \end{matrix}
Because each of the sequences 0 \to F'_ n \to F_ n \to F''_ n \to 0 is split exact (by construction) we obtain a short exact sequence of complexes
0 \to \mathop{\mathrm{Hom}}\nolimits _ R(F''_{\bullet }, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(F_{\bullet }, N) \to \mathop{\mathrm{Hom}}\nolimits _ R(F'_{\bullet }, N) \to 0
by applying the \mathop{\mathrm{Hom}}\nolimits _ R(-, N) functor. Thus we get the long exact sequence from the snake lemma applied to this.
\square
Lemma 10.71.8. Let R be a ring. Let M, N be R-modules. Any x\in R such that either xN = 0, or xM = 0 annihilates each of the modules \mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N).
Proof.
Pick a free resolution F_{\bullet } of M. Since \mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N) is defined as the cohomology of the complex \mathop{\mathrm{Hom}}\nolimits _ R(F_{\bullet }, N) the lemma is clear when xN = 0. If xM = 0, then we see that multiplication by x on F_{\bullet } lifts the zero map on M. Hence by Lemma 10.71.5 we see that it induces the same map on Ext groups as the zero map.
\square
Lemma 10.71.9. Let R be a Noetherian ring. Let M, N be finite R-modules. Then \mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N) is a finite R-module for all i.
Proof.
This holds because \mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N) is computed as the cohomology groups of a complex \mathop{\mathrm{Hom}}\nolimits _ R(F_\bullet , N) with each F_ n a finite free R-module, see Lemma 10.71.1.
\square
Comments (1)
Comment #682 by Keenan Kidwell on