Lemma 12.6.4. Let $\mathcal{A}$ be an abelian category. Let $0 \to M_1 \to M_2 \to M_3 \to 0$ be a short exact sequence in $\mathcal{A}$.

There is a canonical six term exact sequence of abelian groups

\[ \xymatrix{ 0 \ar[r] & \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(M_3, N) \ar[r] & \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(M_2, N) \ar[r] & \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(M_1, N) \ar[lld] \\ & \mathop{\mathrm{Ext}}\nolimits _\mathcal {A}(M_3, N) \ar[r] & \mathop{\mathrm{Ext}}\nolimits _\mathcal {A}(M_2, N) \ar[r] & \mathop{\mathrm{Ext}}\nolimits _\mathcal {A}(M_1, N) } \]for all objects $N$ of $\mathcal{A}$, and

there is a canonical six term exact sequence of abelian groups

\[ \xymatrix{ 0 \ar[r] & \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(N, M_1) \ar[r] & \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(N, M_2) \ar[r] & \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(N, M_3) \ar[lld] \\ & \mathop{\mathrm{Ext}}\nolimits _\mathcal {A}(N, M_1) \ar[r] & \mathop{\mathrm{Ext}}\nolimits _\mathcal {A}(N, M_2) \ar[r] & \mathop{\mathrm{Ext}}\nolimits _\mathcal {A}(N, M_3) } \]for all objects $N$ of $\mathcal{A}$.

## Comments (1)

Comment #737 by Anfang Zhou on

There are also: