The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

19.7 Abelian Sheaves on a site

Let $\mathcal{C}$ be a site. In this section we prove that there are enough injectives for abelian sheaves on $\mathcal{C}$.

Denote $i : \textit{Ab}(\mathcal{C}) \longrightarrow \textit{PAb}(\mathcal{C})$ the forgetful functor from abelian sheaves to abelian presheaves. Let ${}^\# : \textit{PAb}(\mathcal{C}) \longrightarrow \textit{Ab}(\mathcal{C})$ denote the sheafification functor. Recall that ${}^\# $ is a left adjoint to $i$, that ${}^\# $ is exact, and that $i\mathcal{F}^\# = \mathcal{F}$ for any abelian sheaf $\mathcal{F}$. Finally, let $\mathcal{G} \to J(\mathcal{G})$ denote the canonical embedding into an injective presheaf we found in Section 19.6.

For any sheaf $\mathcal{F}$ in $\textit{Ab}(\mathcal{C})$ and any ordinal $\beta $ we define a sheaf $J_\beta (\mathcal{F})$ by transfinite induction. We set $J_0(\mathcal{F}) = \mathcal{F}$. We define $J_1(\mathcal{F}) = J(i\mathcal{F})^\# $. Sheafification of the canonical map $i\mathcal{F} \to J(i\mathcal{F})$ gives a functorial map

\[ \mathcal{F} \longrightarrow J_1(\mathcal{F}) \]

which is injective as $\# $ is exact. We set $J_{\alpha + 1}(\mathcal{F}) = J_1(J_\alpha (\mathcal{F}))$. So that there are canonical injective maps $J_\alpha (\mathcal{F}) \to J_{\alpha + 1}(\mathcal{F})$. For a limit ordinal $\beta $, we define

\[ J_\beta (\mathcal{F}) = \mathop{\mathrm{colim}}\nolimits _{\alpha < \beta } J_\alpha (\mathcal{F}). \]

Note that this is a directed colimit. Hence for any ordinals $\alpha < \beta $ we have an injective map $J_\alpha (\mathcal{F}) \to J_\beta (\mathcal{F})$.

Lemma 19.7.1. With notation as above. Suppose that $\mathcal{G}_1 \to \mathcal{G}_2$ is an injective map of abelian sheaves on $\mathcal{C}$. Let $\alpha $ be an ordinal and let $\mathcal{G}_1 \to J_\alpha (\mathcal{F})$ be a morphism of sheaves. There exists a morphism $\mathcal{G}_2 \to J_{\alpha + 1}(\mathcal{F})$ such that the following diagram commutes

\[ \xymatrix{ \mathcal{G}_1 \ar[d] \ar[r] & \mathcal{G}_2 \ar[d] \\ J_{\alpha }(\mathcal{F}) \ar[r] & J_{\alpha + 1}(\mathcal{F}) } \]

Proof. This is because the map $i\mathcal{G}_1 \to i\mathcal{G}_2$ is injective and hence $i\mathcal{G}_1 \to iJ_\alpha (\mathcal{F})$ extends to $i\mathcal{G}_2 \to J(iJ_\alpha (\mathcal{F}))$ which gives the desired map after applying the sheafification functor. $\square$

This lemma says that somehow the system $\{ J_{\alpha }(\mathcal{F})\} $ is an injective embedding of $\mathcal{F}$. Of course we cannot take the limit over all $\alpha $ because they form a class and not a set. However, the idea is now that you don't have to check injectivity on all injections $\mathcal{G}_1 \to \mathcal{G}_2$, plus the following lemma.

Lemma 19.7.2. Suppose that $\mathcal{G}_ i$, $i\in I$ is set of abelian sheaves on $\mathcal{C}$. There exists an ordinal $\beta $ such that for any sheaf $\mathcal{F}$, any $i\in I$, and any map $\varphi : \mathcal{G}_ i \to J_\beta (\mathcal{F})$ there exists an $\alpha < \beta $ such that $ \varphi $ factors through $J_\alpha (\mathcal{F})$.

Proof. This reduces to the case of a single sheaf $\mathcal{G}$ by taking the direct sum of all the $\mathcal{G}_ i$.

Consider the sets

\[ S = \coprod \nolimits _{U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})} \mathcal{G}(U). \]

and

\[ T_\beta = \coprod \nolimits _{U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})} J_\beta (\mathcal{F})(U) \]

Then $T_\beta = \mathop{\mathrm{colim}}\nolimits _{\alpha < \beta } T_\alpha $ with injective transition maps. A morphism $\mathcal{G} \to J_\beta (\mathcal{F})$ factors through $J_\alpha (\mathcal{F})$ if and only if the associated map $S \to T_\beta $ factors through $T_\alpha $. By Sets, Lemma 3.7.1 if the cofinality of $\beta $ is bigger than the cardinality of $S$, then the result of the lemma is true. Hence the lemma follows from the fact that there are ordinals with arbitrarily large cofinality, see Sets, Proposition 3.7.2. $\square$

Recall that for an object $X$ of $\mathcal{C}$ we denote $\mathbf{Z}_ X$ the presheaf of abelian groups $\Gamma (U, \mathbf{Z}_ X) = \oplus _{U \to X} \mathbf{Z}$, see Modules on Sites, Section 18.4. The sheaf associated to this presheaf is denoted $\mathbf{Z}_ X^\# $, see Modules on Sites, Section 18.5. It can be characterized by the property

19.7.2.1
\begin{equation} \label{injectives-equation-free-sheaf-on} \mathop{Mor}\nolimits _{\textit{Ab}(\mathcal{C})}(\mathbf{Z}_ X^\# , \mathcal{G}) = \mathcal{G}(X) \end{equation}

where the element $\varphi $ of the left hand side is mapped to $\varphi (1 \cdot \text{id}_ X)$ in the right hand side. We can use these sheaves to characterize injective abelian sheaves.

Lemma 19.7.3. Suppose $\mathcal{J}$ is a sheaf of abelian groups with the following property: For all $X\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, for any abelian subsheaf $\mathcal{S} \subset \mathbf{Z}_ X^\# $ and any morphism $\varphi : \mathcal{S} \to \mathcal{J}$, there exists a morphism $\mathbf{Z}_ X^\# \to \mathcal{J}$ extending $\varphi $. Then $\mathcal{J}$ is an injective sheaf of abelian groups.

Proof. Let $\mathcal{F} \to \mathcal{G}$ be an injective map of abelian sheaves. Suppose $\varphi : \mathcal{F} \to \mathcal{J}$ is a morphism. Arguing as in the proof of More on Algebra, Lemma 15.53.1 we see that it suffices to prove that if $\mathcal{F} \not= \mathcal{G}$, then we can find an abelian sheaf $\mathcal{F}'$, $\mathcal{F} \subset \mathcal{F}' \subset \mathcal{G}$ such that (a) the inclusion $\mathcal{F} \subset \mathcal{F}'$ is strict, and (b) $\varphi $ can be extended to $\mathcal{F}'$. To find $\mathcal{F}'$, let $X$ be an object of $\mathcal{C}$ such that the inclusion $\mathcal{F}(X) \subset \mathcal{G}(X)$ is strict. Pick $s \in \mathcal{G}(X)$, $s \not\in \mathcal{F}(X)$. Let $\psi : \mathbf{Z}_ X^\# \to \mathcal{G}$ be the morphism corresponding to the section $s$ via (19.7.2.1). Set $\mathcal{S} = \psi ^{-1}(\mathcal{F})$. By assumption the morphism

\[ \mathcal{S} \xrightarrow {\psi } \mathcal{F} \xrightarrow {\varphi } \mathcal{J} \]

can be extended to a morphism $\varphi ' : \mathbf{Z}_ X^\# \to \mathcal{J}$. Note that $\varphi '$ annihilates the kernel of $\psi $ (as this is true for $\varphi $). Thus $\varphi '$ gives rise to a morphism $\varphi '' : \mathop{\mathrm{Im}}(\psi ) \to \mathcal{J}$ which agrees with $\varphi $ on the intersection $\mathcal{F} \cap \mathop{\mathrm{Im}}(\psi )$ by construction. Thus $\varphi $ and $\varphi ''$ glue to give an extension of $\varphi $ to the strictly bigger subsheaf $\mathcal{F}' = \mathcal{F} + \mathop{\mathrm{Im}}(\psi )$. $\square$

Theorem 19.7.4. The category of sheaves of abelian groups on a site has enough injectives. In fact there exists a functorial injective embedding, see Homology, Definition 12.24.5.

Proof. Let $\mathcal{G}_ i$, $i \in I$ be a set of abelian sheaves such that every subsheaf of every $\mathbf{Z}_ X^\# $ occurs as one of the $\mathcal{G}_ i$. Apply Lemma 19.7.2 to this collection to get an ordinal $\beta $. We claim that for any sheaf of abelian groups $\mathcal{F}$ the map $\mathcal{F} \to J_\beta (\mathcal{F})$ is an injection of $\mathcal{F}$ into an injective. Note that by construction the assignment $\mathcal{F} \mapsto \big (\mathcal{F} \to J_\beta (\mathcal{F})\big )$ is indeed functorial.

The proof of the claim comes from the fact that by Lemma 19.7.3 it suffices to extend any morphism $\gamma : \mathcal{G} \to J_\beta (\mathcal{F})$ from a subsheaf $\mathcal{G}$ of some $\mathbf{Z}_ X^\# $ to all of $\mathbf{Z}_ X^\# $. Then by Lemma 19.7.2 the map $\gamma $ lifts into $J_\alpha (\mathcal{F})$ for some $\alpha < \beta $. Finally, we apply Lemma 19.7.1 to get the desired extension of $\gamma $ to a morphism into $J_{\alpha + 1}(\mathcal{F}) \to J_\beta (\mathcal{F})$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01DL. Beware of the difference between the letter 'O' and the digit '0'.