Lemma 19.7.1. With notation as above. Suppose that $\mathcal{G}_1 \to \mathcal{G}_2$ is an injective map of abelian sheaves on $\mathcal{C}$. Let $\alpha$ be an ordinal and let $\mathcal{G}_1 \to J_\alpha (\mathcal{F})$ be a morphism of sheaves. There exists a morphism $\mathcal{G}_2 \to J_{\alpha + 1}(\mathcal{F})$ such that the following diagram commutes

$\xymatrix{ \mathcal{G}_1 \ar[d] \ar[r] & \mathcal{G}_2 \ar[d] \\ J_{\alpha }(\mathcal{F}) \ar[r] & J_{\alpha + 1}(\mathcal{F}) }$

Proof. This is because the map $i\mathcal{G}_1 \to i\mathcal{G}_2$ is injective and hence $i\mathcal{G}_1 \to iJ_\alpha (\mathcal{F})$ extends to $i\mathcal{G}_2 \to J(iJ_\alpha (\mathcal{F}))$ which gives the desired map after applying the sheafification functor. $\square$

There are also:

• 3 comment(s) on Section 19.7: Abelian Sheaves on a site

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).