Lemma 19.7.2. Suppose that $\mathcal{G}_ i$, $i\in I$ is set of abelian sheaves on $\mathcal{C}$. There exists an ordinal $\beta $ such that for any sheaf $\mathcal{F}$, any $i\in I$, and any map $\varphi : \mathcal{G}_ i \to J_\beta (\mathcal{F})$ there exists an $\alpha < \beta $ such that $ \varphi $ factors through $J_\alpha (\mathcal{F})$.
Proof. This reduces to the case of a single sheaf $\mathcal{G}$ by taking the direct sum of all the $\mathcal{G}_ i$.
Consider the sets
and
The transition maps between the sets $T_\beta $ are injective. If the cofinality of $\beta $ is large enough, then $T_\beta = \mathop{\mathrm{colim}}\nolimits _{\alpha < \beta } T_\alpha $, see Sites, Lemma 7.17.10. A morphism $\mathcal{G} \to J_\beta (\mathcal{F})$ factors through $J_\alpha (\mathcal{F})$ if and only if the associated map $S \to T_\beta $ factors through $T_\alpha $. By Sets, Lemma 3.7.1 if the cofinality of $\beta $ is bigger than the cardinality of $S$, then the result of the lemma is true. Hence the lemma follows from the fact that there are ordinals with arbitrarily large cofinality, see Sets, Proposition 3.7.2. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #974 by Fred Rohrer on
Comment #1007 by Johan on
There are also: