The Stacks project

Lemma 19.7.3. Suppose $\mathcal{J}$ is a sheaf of abelian groups with the following property: For all $X\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, for any abelian subsheaf $\mathcal{S} \subset \mathbf{Z}_ X^\# $ and any morphism $\varphi : \mathcal{S} \to \mathcal{J}$, there exists a morphism $\mathbf{Z}_ X^\# \to \mathcal{J}$ extending $\varphi $. Then $\mathcal{J}$ is an injective sheaf of abelian groups.

Proof. Let $\mathcal{F} \to \mathcal{G}$ be an injective map of abelian sheaves. Suppose $\varphi : \mathcal{F} \to \mathcal{J}$ is a morphism. Arguing as in the proof of More on Algebra, Lemma 15.54.1 we see that it suffices to prove that if $\mathcal{F} \not= \mathcal{G}$, then we can find an abelian sheaf $\mathcal{F}'$, $\mathcal{F} \subset \mathcal{F}' \subset \mathcal{G}$ such that (a) the inclusion $\mathcal{F} \subset \mathcal{F}'$ is strict, and (b) $\varphi $ can be extended to $\mathcal{F}'$. To find $\mathcal{F}'$, let $X$ be an object of $\mathcal{C}$ such that the inclusion $\mathcal{F}(X) \subset \mathcal{G}(X)$ is strict. Pick $s \in \mathcal{G}(X)$, $s \not\in \mathcal{F}(X)$. Let $\psi : \mathbf{Z}_ X^\# \to \mathcal{G}$ be the morphism corresponding to the section $s$ via ( Set $\mathcal{S} = \psi ^{-1}(\mathcal{F})$. By assumption the morphism

\[ \mathcal{S} \xrightarrow {\psi } \mathcal{F} \xrightarrow {\varphi } \mathcal{J} \]

can be extended to a morphism $\varphi ' : \mathbf{Z}_ X^\# \to \mathcal{J}$. Note that $\varphi '$ annihilates the kernel of $\psi $ (as this is true for $\varphi $). Thus $\varphi '$ gives rise to a morphism $\varphi '' : \mathop{\mathrm{Im}}(\psi ) \to \mathcal{J}$ which agrees with $\varphi $ on the intersection $\mathcal{F} \cap \mathop{\mathrm{Im}}(\psi )$ by construction. Thus $\varphi $ and $\varphi ''$ glue to give an extension of $\varphi $ to the strictly bigger subsheaf $\mathcal{F}' = \mathcal{F} + \mathop{\mathrm{Im}}(\psi )$. $\square$

Comments (2)

Comment #5029 by Remy on

This is also a special case of Tag 19.11.6 (which appears later). Maybe slightly more natural is to formulate the latter for a generating set instead of a single generator, but it doesn't really matter here since is small so you can take the sum of all .

Comment #5263 by on

Dear Remy, yes. The reason for the formulation in 19.11.6 is that when we talk of Grothendieck abelian categories, it is natural to talk about a generator because the very definition of Grothendieck abelian categories is that they should have one.

There are also:

  • 3 comment(s) on Section 19.7: Abelian Sheaves on a site

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01DO. Beware of the difference between the letter 'O' and the digit '0'.