The Stacks project

Lemma 20.52.2. Let $f : X \to Y$ be a morphism of ringed spaces. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module. Let $\mathcal{E}$ be an $\mathcal{O}_ Y$-module. Assume $\mathcal{E}$ is finite locally free on $Y$, see Modules, Definition 17.14.1. Then there exist isomorphisms

\[ \mathcal{E} \otimes _{\mathcal{O}_ Y} R^ qf_*\mathcal{F} \longrightarrow R^ qf_*(f^*\mathcal{E} \otimes _{\mathcal{O}_ X} \mathcal{F}) \]

for all $q \geq 0$. In fact there exists an isomorphism

\[ \mathcal{E} \otimes _{\mathcal{O}_ Y} Rf_*\mathcal{F} \longrightarrow Rf_*(f^*\mathcal{E} \otimes _{\mathcal{O}_ X} \mathcal{F}) \]

in $D^{+}(Y)$ functorial in $\mathcal{F}$.

Proof. Choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet $ on $X$. Note that $f^*\mathcal{E}$ is finite locally free also, hence we get a resolution

\[ f^*\mathcal{E} \otimes _{\mathcal{O}_ X} \mathcal{F} \longrightarrow f^*\mathcal{E} \otimes _{\mathcal{O}_ X} \mathcal{I}^\bullet \]

which is an injective resolution by Lemma 20.52.1. Apply $f_*$ to see that

\[ Rf_*(f^*\mathcal{E} \otimes _{\mathcal{O}_ X} \mathcal{F}) = f_*(f^*\mathcal{E} \otimes _{\mathcal{O}_ X} \mathcal{I}^\bullet ). \]

Hence the lemma follows if we can show that $f_*(f^*\mathcal{E} \otimes _{\mathcal{O}_ X} \mathcal{F}) = \mathcal{E} \otimes _{\mathcal{O}_ Y} f_*(\mathcal{F})$ functorially in the $\mathcal{O}_ X$-module $\mathcal{F}$. This is clear when $\mathcal{E} = \mathcal{O}_ Y^{\oplus n}$, and follows in general by working locally on $Y$. Details omitted. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01E8. Beware of the difference between the letter 'O' and the digit '0'.