Lemma 20.9.2. Let $X$ be a topological space. Let $\mathcal{F}$ be an abelian presheaf on $X$. The following are equivalent
$\mathcal{F}$ is an abelian sheaf and
for every open covering $\mathcal{U} : U = \bigcup _{i \in I} U_ i$ the natural map
\[ \mathcal{F}(U) \to \check{H}^0(\mathcal{U}, \mathcal{F}) \]is bijective.
Comments (0)
There are also: