The Stacks project

20.9 The Čech complex and Čech cohomology

Let $X$ be a topological space. Let $\mathcal{U} : U = \bigcup _{i \in I} U_ i$ be an open covering, see Topology, Basic notion (13). As is customary we denote $U_{i_0\ldots i_ p} = U_{i_0} \cap \ldots \cap U_{i_ p}$ for the $(p + 1)$-fold intersection of members of $\mathcal{U}$. Let $\mathcal{F}$ be an abelian presheaf on $X$. Set

\[ \check{\mathcal{C}}^ p(\mathcal{U}, \mathcal{F}) = \prod \nolimits _{(i_0, \ldots , i_ p) \in I^{p + 1}} \mathcal{F}(U_{i_0\ldots i_ p}). \]

This is an abelian group. For $s \in \check{\mathcal{C}}^ p(\mathcal{U}, \mathcal{F})$ we denote $s_{i_0\ldots i_ p}$ its value in $\mathcal{F}(U_{i_0\ldots i_ p})$. Note that if $s \in \check{\mathcal{C}}^1(\mathcal{U}, \mathcal{F})$ and $i, j \in I$ then $s_{ij}$ and $s_{ji}$ are both elements of $\mathcal{F}(U_ i \cap U_ j)$ but there is no imposed relation between $s_{ij}$ and $s_{ji}$. In other words, we are not working with alternating cochains (these will be defined in Section 20.23). We define

\[ d : \check{\mathcal{C}}^ p(\mathcal{U}, \mathcal{F}) \longrightarrow \check{\mathcal{C}}^{p + 1}(\mathcal{U}, \mathcal{F}) \]

by the formula

20.9.0.1
\begin{equation} \label{cohomology-equation-d-cech} d(s)_{i_0\ldots i_{p + 1}} = \sum \nolimits _{j = 0}^{p + 1} (-1)^ j s_{i_0\ldots \hat i_ j \ldots i_{p + 1}}|_{U_{i_0\ldots i_{p + 1}}} \end{equation}

It is straightforward to see that $d \circ d = 0$. In other words $\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F})$ is a complex.

Definition 20.9.1. Let $X$ be a topological space. Let $\mathcal{U} : U = \bigcup _{i \in I} U_ i$ be an open covering. Let $\mathcal{F}$ be an abelian presheaf on $X$. The complex $\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F})$ is the Čech complex associated to $\mathcal{F}$ and the open covering $\mathcal{U}$. Its cohomology groups $H^ i(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}))$ are called the Čech cohomology groups associated to $\mathcal{F}$ and the covering $\mathcal{U}$. They are denoted $\check H^ i(\mathcal{U}, \mathcal{F})$.

Lemma 20.9.2. Let $X$ be a topological space. Let $\mathcal{F}$ be an abelian presheaf on $X$. The following are equivalent

  1. $\mathcal{F}$ is an abelian sheaf and

  2. for every open covering $\mathcal{U} : U = \bigcup _{i \in I} U_ i$ the natural map

    \[ \mathcal{F}(U) \to \check{H}^0(\mathcal{U}, \mathcal{F}) \]

    is bijective.

Proof. This is true since the sheaf condition is exactly that $\mathcal{F}(U) \to \check{H}^0(\mathcal{U}, \mathcal{F})$ is bijective for every open covering. $\square$

Lemma 20.9.3. Let $X$ be a topological space. Let $\mathcal{F}$ be an abelian presheaf on $X$. Let $\mathcal{U} : U = \bigcup _{i \in I} U_ i$ be an open covering. If $U_ i = U$ for some $i \in I$, then the extended Čech complex

\[ \mathcal{F}(U) \to \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}) \]

obtained by putting $\mathcal{F}(U)$ in degree $-1$ with differential given by the canonical map of $\mathcal{F}(U)$ into $\check{\mathcal{C}}^0(\mathcal{U}, \mathcal{F})$ is homotopy equivalent to $0$.

Proof. Fix an element $i \in I$ with $U = U_ i$. Observe that $U_{i_0 \ldots i_ p} = U_{i_0 \ldots \hat i_ j \ldots i_ p}$ if $i_ j = i$. Let us define a homotopy

\[ h : \prod \nolimits _{i_0 \ldots i_{p + 1}} \mathcal{F}(U_{i_0 \ldots i_{p + 1}}) \longrightarrow \prod \nolimits _{i_0 \ldots i_ p} \mathcal{F}(U_{i_0 \ldots i_ p}) \]

by the rule

\[ h(s)_{i_0 \ldots i_ p} = s_{i i_0 \ldots i_ p} \]

In other words, $h : \prod _{i_0} \mathcal{F}(U_{i_0}) \to \mathcal{F}(U)$ is projection onto the factor $\mathcal{F}(U_ i) = \mathcal{F}(U)$ and in general the map $h$ equals the projection onto the factors $\mathcal{F}(U_{i i_1 \ldots i_{p + 1}}) = \mathcal{F}(U_{i_1 \ldots i_{p + 1}})$. We compute

\begin{align*} (dh + hd)(s)_{i_0 \ldots i_ p} & = \sum \nolimits _{j = 0}^ p (-1)^ j h(s)_{i_0 \ldots \hat i_ j \ldots i_ p} + d(s)_{i i_0 \ldots i_ p}\\ & = \sum \nolimits _{j = 0}^ p (-1)^ j s_{i i_0 \ldots \hat i_ j \ldots i_ p} + s_{i_0 \ldots i_ p} + \sum \nolimits _{j = 0}^ p (-1)^{j + 1} s_{i i_0 \ldots \hat i_ j \ldots i_ p} \\ & = s_{i_0 \ldots i_ p} \end{align*}

This proves the identity map is homotopic to zero as desired. $\square$


Comments (2)

Comment #783 by Anfang Zhou on

Typo. In the second paragraph, it should be .


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01ED. Beware of the difference between the letter 'O' and the digit '0'.