The Stacks project

20.8 Mayer-Vietoris

Below will construct the Čech-to-cohomology spectral sequence, see Lemma 20.11.5. A special case of that spectral sequence is the Mayer-Vietoris long exact sequence. Since it is such a basic, useful and easy to understand variant of the spectral sequence we treat it here separately.

slogan

Lemma 20.8.1. Let $X$ be a ringed space. Let $U' \subset U \subset X$ be open subspaces. For any injective $\mathcal{O}_ X$-module $\mathcal{I}$ the restriction mapping $\mathcal{I}(U) \to \mathcal{I}(U')$ is surjective.

Proof. Let $j : U \to X$ and $j' : U' \to X$ be the open immersions. Recall that $j_!\mathcal{O}_ U$ is the extension by zero of $\mathcal{O}_ U = \mathcal{O}_ X|_ U$, see Sheaves, Section 6.31. Since $j_!$ is a left adjoint to restriction we see that for any sheaf $\mathcal{F}$ of $\mathcal{O}_ X$-modules

\[ \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(j_!\mathcal{O}_ U, \mathcal{F}) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{O}_ U, \mathcal{F}|_ U) = \mathcal{F}(U) \]

see Sheaves, Lemma 6.31.8. Similarly, the sheaf $j'_!\mathcal{O}_{U'}$ represents the functor $\mathcal{F} \mapsto \mathcal{F}(U')$. Moreover there is an obvious canonical map of $\mathcal{O}_ X$-modules

\[ j'_!\mathcal{O}_{U'} \longrightarrow j_!\mathcal{O}_ U \]

which corresponds to the restriction mapping $\mathcal{F}(U) \to \mathcal{F}(U')$ via Yoneda's lemma (Categories, Lemma 4.3.5). By the description of the stalks of the sheaves $j'_!\mathcal{O}_{U'}$, $j_!\mathcal{O}_ U$ we see that the displayed map above is injective (see lemma cited above). Hence if $\mathcal{I}$ is an injective $\mathcal{O}_ X$-module, then the map

\[ \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(j_!\mathcal{O}_ U, \mathcal{I}) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(j'_!\mathcal{O}_{U'}, \mathcal{I}) \]

is surjective, see Homology, Lemma 12.27.2. Putting everything together we obtain the lemma. $\square$

Lemma 20.8.2 (Mayer-Vietoris). Let $X$ be a ringed space. Suppose that $X = U \cup V$ is a union of two open subsets. For every $\mathcal{O}_ X$-module $\mathcal{F}$ there exists a long exact cohomology sequence

\[ 0 \to H^0(X, \mathcal{F}) \to H^0(U, \mathcal{F}) \oplus H^0(V, \mathcal{F}) \to H^0(U \cap V, \mathcal{F}) \to H^1(X, \mathcal{F}) \to \ldots \]

This long exact sequence is functorial in $\mathcal{F}$.

Proof. The sheaf condition says that the kernel of $(1, -1) : \mathcal{F}(U) \oplus \mathcal{F}(V) \to \mathcal{F}(U \cap V)$ is equal to the image of $\mathcal{F}(X)$ by the first map for any abelian sheaf $\mathcal{F}$. Lemma 20.8.1 above implies that the map $(1, -1) : \mathcal{I}(U) \oplus \mathcal{I}(V) \to \mathcal{I}(U \cap V)$ is surjective whenever $\mathcal{I}$ is an injective $\mathcal{O}_ X$-module. Hence if $\mathcal{F} \to \mathcal{I}^\bullet $ is an injective resolution of $\mathcal{F}$, then we get a short exact sequence of complexes

\[ 0 \to \mathcal{I}^\bullet (X) \to \mathcal{I}^\bullet (U) \oplus \mathcal{I}^\bullet (V) \to \mathcal{I}^\bullet (U \cap V) \to 0. \]

Taking cohomology gives the result (use Homology, Lemma 12.13.12). We omit the proof of the functoriality of the sequence. $\square$

Lemma 20.8.3 (Relative Mayer-Vietoris). Let $f : X \to Y$ be a morphism of ringed spaces. Suppose that $X = U \cup V$ is a union of two open subsets. Denote $a = f|_ U : U \to Y$, $b = f|_ V : V \to Y$, and $c = f|_{U \cap V} : U \cap V \to Y$. For every $\mathcal{O}_ X$-module $\mathcal{F}$ there exists a long exact sequence

\[ 0 \to f_*\mathcal{F} \to a_*(\mathcal{F}|_ U) \oplus b_*(\mathcal{F}|_ V) \to c_*(\mathcal{F}|_{U \cap V}) \to R^1f_*\mathcal{F} \to \ldots \]

This long exact sequence is functorial in $\mathcal{F}$.

Proof. Let $\mathcal{F} \to \mathcal{I}^\bullet $ be an injective resolution of $\mathcal{F}$. We claim that we get a short exact sequence of complexes

\[ 0 \to f_*\mathcal{I}^\bullet \to a_*\mathcal{I}^\bullet |_ U \oplus b_*\mathcal{I}^\bullet |_ V \to c_*\mathcal{I}^\bullet |_{U \cap V} \to 0. \]

Namely, for any open $W \subset Y$, and for any $n \geq 0$ the corresponding sequence of groups of sections over $W$

\[ 0 \to \mathcal{I}^ n(f^{-1}(W)) \to \mathcal{I}^ n(U \cap f^{-1}(W)) \oplus \mathcal{I}^ n(V \cap f^{-1}(W)) \to \mathcal{I}^ n(U \cap V \cap f^{-1}(W)) \to 0 \]

was shown to be short exact in the proof of Lemma 20.8.2. The lemma follows by taking cohomology sheaves and using the fact that $\mathcal{I}^\bullet |_ U$ is an injective resolution of $\mathcal{F}|_ U$ and similarly for $\mathcal{I}^\bullet |_ V$, $\mathcal{I}^\bullet |_{U \cap V}$ see Lemma 20.7.1. $\square$


Comments (2)

Comment #933 by correction_bot on

Typos in both displayed exact sequences in the proof: in the first, should be ; similarly, in the second exact sequence, in the first summand replace with .

Comment #934 by correction_bot on

Whoops, posted previous comment in wrong spot: the typos are in the proof of TAG 01EC (relative Mayer-Vietoris).


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01E9. Beware of the difference between the letter 'O' and the digit '0'.