Lemma 20.8.2 (Mayer-Vietoris). Let $X$ be a ringed space. Suppose that $X = U \cup V$ is a union of two open subsets. For every $\mathcal{O}_ X$-module $\mathcal{F}$ there exists a long exact cohomology sequence

$0 \to H^0(X, \mathcal{F}) \to H^0(U, \mathcal{F}) \oplus H^0(V, \mathcal{F}) \to H^0(U \cap V, \mathcal{F}) \to H^1(X, \mathcal{F}) \to \ldots$

This long exact sequence is functorial in $\mathcal{F}$.

Proof. The sheaf condition says that the kernel of $(1, -1) : \mathcal{F}(U) \oplus \mathcal{F}(V) \to \mathcal{F}(U \cap V)$ is equal to the image of $\mathcal{F}(X)$ by the first map for any abelian sheaf $\mathcal{F}$. Lemma 20.8.1 above implies that the map $(1, -1) : \mathcal{I}(U) \oplus \mathcal{I}(V) \to \mathcal{I}(U \cap V)$ is surjective whenever $\mathcal{I}$ is an injective $\mathcal{O}_ X$-module. Hence if $\mathcal{F} \to \mathcal{I}^\bullet$ is an injective resolution of $\mathcal{F}$, then we get a short exact sequence of complexes

$0 \to \mathcal{I}^\bullet (X) \to \mathcal{I}^\bullet (U) \oplus \mathcal{I}^\bullet (V) \to \mathcal{I}^\bullet (U \cap V) \to 0.$

Taking cohomology gives the result (use Homology, Lemma 12.13.12). We omit the proof of the functoriality of the sequence. $\square$

## Comments (0)

There are also:

• 2 comment(s) on Section 20.8: Mayer-Vietoris

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01EB. Beware of the difference between the letter 'O' and the digit '0'.