The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

20.8 Locality of cohomology

The following lemma says there is no ambiguity in defining the cohomology of a sheaf $\mathcal{F}$ over an open.

Lemma 20.8.1. Let $X$ be a ringed space. Let $U \subset X$ be an open subspace.

  1. If $\mathcal{I}$ is an injective $\mathcal{O}_ X$-module then $\mathcal{I}|_ U$ is an injective $\mathcal{O}_ U$-module.

  2. For any sheaf of $\mathcal{O}_ X$-modules $\mathcal{F}$ we have $H^ p(U, \mathcal{F}) = H^ p(U, \mathcal{F}|_ U)$.

Proof. Denote $j : U \to X$ the open immersion. Recall that the functor $j^{-1}$ of restriction to $U$ is a right adjoint to the functor $j_!$ of extension by $0$, see Sheaves, Lemma 6.31.8. Moreover, $j_!$ is exact. Hence (1) follows from Homology, Lemma 12.26.1.

By definition $H^ p(U, \mathcal{F}) = H^ p(\Gamma (U, \mathcal{I}^\bullet ))$ where $\mathcal{F} \to \mathcal{I}^\bullet $ is an injective resolution in $\textit{Mod}(\mathcal{O}_ X)$. By the above we see that $\mathcal{F}|_ U \to \mathcal{I}^\bullet |_ U$ is an injective resolution in $\textit{Mod}(\mathcal{O}_ U)$. Hence $H^ p(U, \mathcal{F}|_ U)$ is equal to $H^ p(\Gamma (U, \mathcal{I}^\bullet |_ U))$. Of course $\Gamma (U, \mathcal{F}) = \Gamma (U, \mathcal{F}|_ U)$ for any sheaf $\mathcal{F}$ on $X$. Hence the equality in (2). $\square$

Let $X$ be a ringed space. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_ X$-modules. Let $U \subset V \subset X$ be open subsets. Then there is a canonical restriction mapping

20.8.1.1
\begin{equation} \label{cohomology-equation-restriction-mapping} H^ n(V, \mathcal{F}) \longrightarrow H^ n(U, \mathcal{F}), \quad \xi \longmapsto \xi |_ U \end{equation}

functorial in $\mathcal{F}$. Namely, choose any injective resolution $\mathcal{F} \to \mathcal{I}^\bullet $. The restriction mappings of the sheaves $\mathcal{I}^ p$ give a morphism of complexes

\[ \Gamma (V, \mathcal{I}^\bullet ) \longrightarrow \Gamma (U, \mathcal{I}^\bullet ) \]

The LHS is a complex representing $R\Gamma (V, \mathcal{F})$ and the RHS is a complex representing $R\Gamma (U, \mathcal{F})$. We get the map on cohomology groups by applying the functor $H^ n$. As indicated we will use the notation $\xi \mapsto \xi |_ U$ to denote this map. Thus the rule $U \mapsto H^ n(U, \mathcal{F})$ is a presheaf of $\mathcal{O}_ X$-modules. This presheaf is customarily denoted $\underline{H}^ n(\mathcal{F})$. We will give another interpretation of this presheaf in Lemma 20.12.4.

Lemma 20.8.2. Let $X$ be a ringed space. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_ X$-modules. Let $U \subset X$ be an open subspace. Let $n > 0$ and let $\xi \in H^ n(U, \mathcal{F})$. Then there exists an open covering $U = \bigcup _{i\in I} U_ i$ such that $\xi |_{U_ i} = 0$ for all $i \in I$.

Proof. Let $\mathcal{F} \to \mathcal{I}^\bullet $ be an injective resolution. Then

\[ H^ n(U, \mathcal{F}) = \frac{\mathop{\mathrm{Ker}}(\mathcal{I}^ n(U) \to \mathcal{I}^{n + 1}(U))}{\mathop{\mathrm{Im}}(\mathcal{I}^{n - 1}(U) \to \mathcal{I}^ n(U))}. \]

Pick an element $\tilde\xi \in \mathcal{I}^ n(U)$ representing the cohomology class in the presentation above. Since $\mathcal{I}^\bullet $ is an injective resolution of $\mathcal{F}$ and $n > 0$ we see that the complex $\mathcal{I}^\bullet $ is exact in degree $n$. Hence $\mathop{\mathrm{Im}}(\mathcal{I}^{n - 1} \to \mathcal{I}^ n) = \mathop{\mathrm{Ker}}(\mathcal{I}^ n \to \mathcal{I}^{n + 1})$ as sheaves. Since $\tilde\xi $ is a section of the kernel sheaf over $U$ we conclude there exists an open covering $U = \bigcup _{i \in I} U_ i$ such that $\tilde\xi |_{U_ i}$ is the image under $d$ of a section $\xi _ i \in \mathcal{I}^{n - 1}(U_ i)$. By our definition of the restriction $\xi |_{U_ i}$ as corresponding to the class of $\tilde\xi |_{U_ i}$ we conclude. $\square$

Lemma 20.8.3. Let $f : X \to Y$ be a morphism of ringed spaces. Let $\mathcal{F}$ be a $\mathcal{O}_ X$-module. The sheaves $R^ if_*\mathcal{F}$ are the sheaves associated to the presheaves

\[ V \longmapsto H^ i(f^{-1}(V), \mathcal{F}) \]

with restriction mappings as in Equation (20.8.1.1). There is a similar statement for $R^ if_*$ applied to a bounded below complex $\mathcal{F}^\bullet $.

Proof. Let $\mathcal{F} \to \mathcal{I}^\bullet $ be an injective resolution. Then $R^ if_*\mathcal{F}$ is by definition the $i$th cohomology sheaf of the complex

\[ f_*\mathcal{I}^0 \to f_*\mathcal{I}^1 \to f_*\mathcal{I}^2 \to \ldots \]

By definition of the abelian category structure on $\mathcal{O}_ Y$-modules this cohomology sheaf is the sheaf associated to the presheaf

\[ V \longmapsto \frac{\mathop{\mathrm{Ker}}(f_*\mathcal{I}^ i(V) \to f_*\mathcal{I}^{i + 1}(V))}{\mathop{\mathrm{Im}}(f_*\mathcal{I}^{i - 1}(V) \to f_*\mathcal{I}^ i(V))} \]

and this is obviously equal to

\[ \frac{\mathop{\mathrm{Ker}}(\mathcal{I}^ i(f^{-1}(V)) \to \mathcal{I}^{i + 1}(f^{-1}(V)))}{\mathop{\mathrm{Im}}(\mathcal{I}^{i - 1}(f^{-1}(V)) \to \mathcal{I}^ i(f^{-1}(V)))} \]

which is equal to $H^ i(f^{-1}(V), \mathcal{F})$ and we win. $\square$

Lemma 20.8.4. Let $f : X \to Y$ be a morphism of ringed spaces. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module. Let $V \subset Y$ be an open subspace. Denote $g : f^{-1}(V) \to V$ the restriction of $f$. Then we have

\[ R^ pg_*(\mathcal{F}|_{f^{-1}(V)}) = (R^ pf_*\mathcal{F})|_ V \]

There is a similar statement for the derived image $Rf_*\mathcal{F}^\bullet $ where $\mathcal{F}^\bullet $ is a bounded below complex of $\mathcal{O}_ X$-modules.

Proof. First proof. Apply Lemmas 20.8.3 and 20.8.1 to see the displayed equality. Second proof. Choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet $ and use that $\mathcal{F}|_{f^{-1}(V)} \to \mathcal{I}^\bullet |_{f^{-1}(V)}$ is an injective resolution also. $\square$

Remark 20.8.5. Here is a different approach to the proofs of Lemmas 20.8.2 and 20.8.3 above. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $i_ X : \textit{Mod}(\mathcal{O}_ X) \to \textit{PMod}(\mathcal{O}_ X)$ be the inclusion functor and let $\# $ be the sheafification functor. Recall that $i_ X$ is left exact and $\# $ is exact.

  1. First prove Lemma 20.12.4 below which says that the right derived functors of $i_ X$ are given by $R^ pi_ X\mathcal{F} = \underline{H}^ p(\mathcal{F})$. Here is another proof: The equality is clear for $p = 0$. Both $(R^ pi_ X)_{p \geq 0}$ and $(\underline{H}^ p)_{p \geq 0}$ are delta functors vanishing on injectives, hence both are universal, hence they are isomorphic. See Homology, Section 12.11.

  2. A restatement of Lemma 20.8.2 is that $(\underline{H}^ p(\mathcal{F}))^\# = 0$, $p > 0$ for any sheaf of $\mathcal{O}_ X$-modules $\mathcal{F}$. To see this is true, use that ${}^\# $ is exact so

    \[ (\underline{H}^ p(\mathcal{F}))^\# = (R^ pi_ X\mathcal{F})^\# = R^ p(\# \circ i_ X)(\mathcal{F}) = 0 \]

    because $\# \circ i_ X$ is the identity functor.

  3. Let $f : X \to Y$ be a morphism of ringed spaces. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module. The presheaf $V \mapsto H^ p(f^{-1}V, \mathcal{F})$ is equal to $R^ p (i_ Y \circ f_*)\mathcal{F}$. You can prove this by noticing that both give universal delta functors as in the argument of (1) above. Hence Lemma 20.8.3 says that $R^ p f_* \mathcal{F}= (R^ p (i_ Y \circ f_*)\mathcal{F})^\# $. Again using that $\# $ is exact a that $\# \circ i_ Y$ is the identity functor we see that

    \[ R^ p f_* \mathcal{F} = R^ p(\# \circ i_ Y \circ f_*)\mathcal{F} = (R^ p (i_ Y \circ f_*)\mathcal{F})^\# \]

    as desired.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01E0. Beware of the difference between the letter 'O' and the digit '0'.