The Stacks project

20.6 First cohomology and invertible sheaves

The Picard group of a ringed space is defined in Modules, Section 17.25.

Lemma 20.6.1. Let $(X, \mathcal{O}_ X)$ be a locally ringed space. There is a canonical isomorphism

\[ H^1(X, \mathcal{O}_ X^*) = \mathop{\mathrm{Pic}}\nolimits (X). \]

of abelian groups.

Proof. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Consider the presheaf $\mathcal{L}^*$ defined by the rule

\[ U \longmapsto \{ s \in \mathcal{L}(U) \text{ such that } \mathcal{O}_ U \xrightarrow {s \cdot -} \mathcal{L}_ U \text{ is an isomorphism}\} \]

This presheaf satisfies the sheaf condition. Moreover, if $f \in \mathcal{O}_ X^*(U)$ and $s \in \mathcal{L}^*(U)$, then clearly $fs \in \mathcal{L}^*(U)$. By the same token, if $s, s' \in \mathcal{L}^*(U)$ then there exists a unique $f \in \mathcal{O}_ X^*(U)$ such that $fs = s'$. Moreover, the sheaf $\mathcal{L}^*$ has sections locally by Modules, Lemma 17.25.4. In other words we see that $\mathcal{L}^*$ is a $\mathcal{O}_ X^*$-torsor. Thus we get a map

\[ \begin{matrix} \text{invertible sheaves on }(X, \mathcal{O}_ X) \\ \text{ up to isomorphism} \end{matrix} \longrightarrow \begin{matrix} \mathcal{O}_ X^*\text{-torsors} \\ \text{ up to isomorphism} \end{matrix} \]

We omit the verification that this is a homomorphism of abelian groups. By Lemma 20.4.3 the right hand side is canonically bijective to $H^1(X, \mathcal{O}_ X^*)$. Thus we have to show this map is injective and surjective.

Injective. If the torsor $\mathcal{L}^*$ is trivial, this means by Lemma 20.4.2 that $\mathcal{L}^*$ has a global section. Hence this means exactly that $\mathcal{L} \cong \mathcal{O}_ X$ is the neutral element in $\mathop{\mathrm{Pic}}\nolimits (X)$.

Surjective. Let $\mathcal{F}$ be an $\mathcal{O}_ X^*$-torsor. Consider the presheaf of sets

\[ \mathcal{L}_1 : U \longmapsto (\mathcal{F}(U) \times \mathcal{O}_ X(U))/\mathcal{O}_ X^*(U) \]

where the action of $f \in \mathcal{O}_ X^*(U)$ on $(s, g)$ is $(fs, f^{-1}g)$. Then $\mathcal{L}_1$ is a presheaf of $\mathcal{O}_ X$-modules by setting $(s, g) + (s', g') = (s, g + (s'/s)g')$ where $s'/s$ is the local section $f$ of $\mathcal{O}_ X^*$ such that $fs = s'$, and $h(s, g) = (s, hg)$ for $h$ a local section of $\mathcal{O}_ X$. We omit the verification that the sheafification $\mathcal{L} = \mathcal{L}_1^\# $ is an invertible $\mathcal{O}_ X$-module whose associated $\mathcal{O}_ X^*$-torsor $\mathcal{L}^*$ is isomorphic to $\mathcal{F}$. $\square$


Comments (2)

Comment #5992 by Gabriel Ribeiro on

I don't think the proof uses in any way that is a locally ringed space.

Comment #5993 by on

Actually, it does. Namely, our definition of invertible modules on general ringed spaces doesn't imply that they are locally generated by 1 section. You can see this: the proof doesn't work if the stalks of aren't local because this is used in Lemma 17.25.4.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09NT. Beware of the difference between the letter 'O' and the digit '0'.