Lemma 20.11.5. Let $X$ be a ringed space. Let $\mathcal{U} : U = \bigcup _{i \in I} U_ i$ be a covering. For any sheaf of $\mathcal{O}_ X$-modules $\mathcal{F}$ there is a spectral sequence $(E_ r, d_ r)_{r \geq 0}$ with

\[ E_2^{p, q} = \check{H}^ p(\mathcal{U}, \underline{H}^ q(\mathcal{F})) \]

converging to $H^{p + q}(U, \mathcal{F})$. This spectral sequence is functorial in $\mathcal{F}$.

**Proof.**
This is a Grothendieck spectral sequence (see Derived Categories, Lemma 13.22.2) for the functors

\[ i : \textit{Mod}(\mathcal{O}_ X) \to \textit{PMod}(\mathcal{O}_ X) \quad \text{and}\quad \check{H}^0(\mathcal{U}, - ) : \textit{PMod}(\mathcal{O}_ X) \to \text{Mod}_{\mathcal{O}_ X(U)}. \]

Namely, we have $\check{H}^0(\mathcal{U}, i(\mathcal{F})) = \mathcal{F}(U)$ by Lemma 20.9.2. We have that $i(\mathcal{I})$ is Čech acyclic by Lemma 20.11.1. And we have that $\check{H}^ p(\mathcal{U}, -) = R^ p\check{H}^0(\mathcal{U}, -)$ as functors on $\textit{PMod}(\mathcal{O}_ X)$ by Lemma 20.10.5. Putting everything together gives the lemma.
$\square$

## Comments (0)