Lemma 20.13.7. Let $f : X \to Y$ and $g : Y \to Z$ be morphisms of ringed spaces. In this case $Rg_* \circ Rf_* = R(g \circ f)_*$ as functors from $D^{+}(X) \to D^{+}(Z)$.

** The total derived functor of a composition is the composition of the total derived functors. **

**Proof.**
We are going to apply Derived Categories, Lemma 13.22.1. It is clear that $g_* \circ f_* = (g \circ f)_*$, see Sheaves, Lemma 6.21.2. It remains to show that $f_*\mathcal{I}$ is $g_*$-acyclic. This follows from Lemma 20.11.10 and the description of the higher direct images $R^ ig_*$ in Lemma 20.7.3.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (1)

Comment #1228 by David Corwin on