Processing math: 100%

The Stacks project

Remark 20.23.5. This means that if we have two total orderings <_1 and <_2 on the index set I, then we get an isomorphism of complexes \tau = \pi _2 \circ c_1 : \check{\mathcal{C}}_{ord\text{-}1}(\mathcal{U}, \mathcal{F}) \to \check{\mathcal{C}}_{ord\text{-}2}(\mathcal{U}, \mathcal{F}). It is clear that

\tau (s)_{i_0 \ldots i_ p} = \text{sign}(\sigma ) s_{i_{\sigma (0)} \ldots i_{\sigma (p)}}

where i_0 <_1 i_1 <_1 \ldots <_1 i_ p and i_{\sigma (0)} <_2 i_{\sigma (1)} <_2 \ldots <_2 i_{\sigma (p)}. This is the sense in which the ordered Čech complex is independent of the chosen total ordering.


Comments (0)

There are also:

  • 2 comment(s) on Section 20.23: The alternating Čech complex

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.