Remark 20.23.5. This means that if we have two total orderings <_1 and <_2 on the index set I, then we get an isomorphism of complexes \tau = \pi _2 \circ c_1 : \check{\mathcal{C}}_{ord\text{-}1}(\mathcal{U}, \mathcal{F}) \to \check{\mathcal{C}}_{ord\text{-}2}(\mathcal{U}, \mathcal{F}). It is clear that
where i_0 <_1 i_1 <_1 \ldots <_1 i_ p and i_{\sigma (0)} <_2 i_{\sigma (1)} <_2 \ldots <_2 i_{\sigma (p)}. This is the sense in which the ordered Čech complex is independent of the chosen total ordering.
Comments (0)
There are also: