The Stacks project

Lemma 26.6.8. Let $X$ be a locally ringed space. Assume $X = U \amalg V$ with $U$ and $V$ open and such that $U$, $V$ are affine schemes. Then $X$ is an affine scheme.

Proof. Set $R = \Gamma (X, \mathcal{O}_ X)$. Note that $R = \mathcal{O}_ X(U) \times \mathcal{O}_ X(V)$ by the sheaf property. By Lemma 26.6.4 there is a canonical morphism of locally ringed spaces $X \to \mathop{\mathrm{Spec}}(R)$. By Algebra, Lemma 10.21.2 we see that as a topological space $\mathop{\mathrm{Spec}}(\mathcal{O}_ X(U)) \amalg \mathop{\mathrm{Spec}}(\mathcal{O}_ X(V)) = \mathop{\mathrm{Spec}}(R)$ with the maps coming from the ring homomorphisms $R \to \mathcal{O}_ X(U)$ and $R \to \mathcal{O}_ X(V)$. This of course means that $\mathop{\mathrm{Spec}}(R)$ is the coproduct in the category of locally ringed spaces as well. By assumption the morphism $X \to \mathop{\mathrm{Spec}}(R)$ induces an isomorphism of $\mathop{\mathrm{Spec}}(\mathcal{O}_ X(U))$ with $U$ and similarly for $V$. Hence $X \to \mathop{\mathrm{Spec}}(R)$ is an isomorphism. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01I5. Beware of the difference between the letter 'O' and the digit '0'.