Lemma 26.10.4. Let $f : Y \to X$ be an immersion of schemes. Then $f$ is a closed immersion if and only if $f(Y) \subset X$ is a closed subset.
Proof. If $f$ is a closed immersion then $f(Y)$ is closed by definition. Conversely, suppose that $f(Y)$ is closed. By definition there exists an open subscheme $U \subset X$ such that $f$ is the composition of a closed immersion $i : Y \to U$ and the open immersion $j : U \to X$. Let $\mathcal{I} \subset \mathcal{O}_ U$ be the quasi-coherent sheaf of ideals associated to the closed immersion $i$. Note that $\mathcal{I}|_{U \setminus i(Y)} = \mathcal{O}_{U \setminus i(Y)} = \mathcal{O}_{X \setminus i(Y)}|_{U \setminus i(Y)}$. Thus we may glue (see Sheaves, Section 6.33) $\mathcal{I}$ and $\mathcal{O}_{X \setminus i(Y)}$ to a sheaf of ideals $\mathcal{J} \subset \mathcal{O}_ X$. Since every point of $X$ has a neighbourhood where $\mathcal{J}$ is quasi-coherent, we see that $\mathcal{J}$ is quasi-coherent (in particular locally generated by sections). By construction $\mathcal{O}_ X/\mathcal{J}$ is supported on $U$ and, restricted there, equal to $\mathcal{O}_ U/\mathcal{I}$. Thus we see that the closed subspaces associated to $\mathcal{I}$ and $\mathcal{J}$ are canonically isomorphic, see Example 26.4.3. In particular the closed subspace of $U$ associated to $\mathcal{I}$ is isomorphic to a closed subspace of $X$. Since $Y \to U$ is identified with the closed subspace associated to $\mathcal{I}$, see Lemma 26.4.5, we conclude that $Y \to U \to X$ is a closed immersion. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: