Lemma 26.11.6. Let $X$ be a scheme. Let $X = \bigcup _ i U_ i$ be an affine open covering. Let $V \subset X$ be an affine open. There exists a standard open covering $V = \bigcup _{j = 1, \ldots , m} V_ j$ (see Definition 26.5.2) such that each $V_ j$ is a standard open in one of the $U_ i$.
Proof. Pick $v \in V$. Then $v \in U_ i$ for some $i$. By Lemma 26.11.5 above there exists an open $v \in W_ v \subset V \cap U_ i$ such that $W_ v$ is a standard open in both $V$ and $U_ i$. Since $V$ is quasi-compact the lemma follows. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)