Definition 26.12.5. Let $X$ be a scheme. Let $Z \subset X$ be a closed subset. A scheme structure on $Z$ is given by a closed subscheme $Z'$ of $X$ whose underlying set is equal to $Z$. We often say “let $(Z, \mathcal{O}_ Z)$ be a scheme structure on $Z$” to indicate this. The reduced induced scheme structure on $Z$ is the one constructed in Lemma 26.12.4. The reduction $X_{red}$ of $X$ is the reduced induced scheme structure on $X$ itself.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #2616 by Harry on
Comment #2636 by Johan on
There are also: