Remark 26.12.6. Let $X$ be a scheme. Let $T \subset X$ be a locally closed subset. In this situation we sometimes also use the phrase “reduced induced scheme structure on $T$”. It refers to the reduced induced scheme structure from Definition 26.12.5 when we view $T$ as a closed subset of the open subscheme $X \setminus \partial T$ of $X$. Here $\partial T = \overline{T} \setminus T$ is the “boundary” of $T$ in the topological space of $X$.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)