Lemma 26.12.7. Let $X$ be a scheme. Let $Z \subset X$ be a closed subscheme. Let $Y$ be a reduced scheme. A morphism $f : Y \to X$ factors through $Z$ if and only if $f(Y) \subset Z$ (set theoretically). In particular, any morphism $Y \to X$ factors as $Y \to X_{red} \to X$.

**Proof.**
Assume $f(Y) \subset Z$ (set theoretically). Let $\mathcal{I} \subset \mathcal{O}_ X$ be the ideal sheaf of $Z$. For any affine opens $U \subset X$, $\mathop{\mathrm{Spec}}(B) = V \subset Y$ with $f(V) \subset U$ and any $g \in \mathcal{I}(U)$ the pullback $b = f^\sharp (g) \in \Gamma (V, \mathcal{O}_ Y) = B$ maps to zero in the residue field of any $y \in V$. In other words $b \in \bigcap _{\mathfrak p \subset B} \mathfrak p$. This implies $b = 0$ as $B$ is reduced (Lemma 26.12.2, and Algebra, Lemma 10.17.2). Hence $f$ factors through $Z$ by Lemma 26.4.6.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (8)

Comment #651 by Anfang on

Comment #662 by Johan on

Comment #4900 by Lukas Sauer on

Comment #4903 by Lukas Sauer on

Comment #4904 by Lukas Sauer on

Comment #5177 by Johan on

Comment #8526 by ElĂas Guisado on

Comment #8527 by Johan on

There are also: