Lemma 26.21.1. The diagonal morphism of a morphism between affines is closed.

**Proof.**
The diagonal morphism associated to the morphism $\mathop{\mathrm{Spec}}(S) \to \mathop{\mathrm{Spec}}(R)$ is the morphism on spectra corresponding to the ring map $S \otimes _ R S \to S$, $a \otimes b \mapsto ab$. This map is clearly surjective, so $S \cong S \otimes _ R S/J$ for some ideal $J \subset S \otimes _ R S$. Hence $\Delta $ is a closed immersion according to Example 26.8.1.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: