Lemma 26.23.9. Let $f : X \to S$ be a separated morphism. Any locally closed subscheme $Z \subset X$ is separated over $S$.
Proof. Follows from Lemma 26.23.8 and the fact that a composition of separated morphisms is separated (Lemma 26.21.12). $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: