Example 26.23.10. The morphism \mathop{\mathrm{Spec}}(\mathbf{Q}) \to \mathop{\mathrm{Spec}}(\mathbf{Z}) is a monomorphism. This is true because \mathbf{Q} \otimes _{\mathbf{Z}} \mathbf{Q} = \mathbf{Q}. More generally, for any scheme S and any point s \in S the canonical morphism
\mathop{\mathrm{Spec}}(\mathcal{O}_{S, s}) \longrightarrow S
is a monomorphism.
Comments (0)
There are also: