Lemma 27.16.8. In Situation 27.15.1. Let $(f : T \to S, d, \mathcal{L}, \psi )$ be a quadruple. Let $r_{d, \mathcal{L}, \psi } : T \to \underline{\text{Proj}}_ S(\mathcal{A})$ be the associated $S$-morphism. There exists an isomorphism of $\mathbf{Z}$-graded $\mathcal{O}_ T$-algebras

$\theta : r_{d, \mathcal{L}, \psi }^*\left( \bigoplus \nolimits _{n \in \mathbf{Z}} \mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(nd) \right) \longrightarrow \bigoplus \nolimits _{n \in \mathbf{Z}} \mathcal{L}^{\otimes n}$

such that the following diagram commutes

$\xymatrix{ \mathcal{A}^{(d)} \ar[rr]_-{\psi } \ar[rd]_-{\psi _{univ}} & & f_*\left( \bigoplus \nolimits _{n \in \mathbf{Z}} \mathcal{L}^{\otimes n} \right) \\ & \pi _*\left( \bigoplus \nolimits _{n \geq 0} \mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(nd) \right) \ar[ru]_\theta }$

The commutativity of this diagram uniquely determines $\theta$.

Proof. Note that the quadruple $(f : T \to S, d, \mathcal{L}, \psi )$ defines an element of $F_ d(T)$. Let $U_ d \subset \underline{\text{Proj}}_ S(\mathcal{A})$ be the locus where the sheaf $\mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(d)$ is invertible and generated by the image of $\psi _{univ} : \pi ^*\mathcal{A}_ d \to \mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(d)$. Recall that $U_ d$ represents the functor $F_ d$, see the proof of Lemma 27.16.5. Hence the result will follow if we can show the quadruple $(U_ d \to S, d, \mathcal{O}_{U_ d}(d), \psi _{univ}|_{\mathcal{A}^{(d)}})$ is the universal family, i.e., the representing object in $F_ d(U_ d)$. We may do this after restricting to an affine open of $S$ because (a) the formation of the functors $F_ d$ commutes with base change (see Lemma 27.16.1), and (b) the pair $(\bigoplus _{n \in \mathbf{Z}} \mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(n), \psi _{univ})$ is constructed by glueing over affine opens in $S$ (see Lemma 27.15.5). Hence we may assume that $S$ is affine. In this case the functor of quadruples $F_ d$ and the functor of triples $F_ d$ agree (see proof of Lemma 27.16.2) and moreover Lemma 27.12.2 shows that $(d, \mathcal{O}_{U_ d}(d), \psi ^ d)$ is the universal triple over $U_ d$. Going backwards through the identifications in the proof of Lemma 27.16.2 shows that $(U_ d \to S, d, \mathcal{O}_{U_ d}(d), \psi _{univ}|_{\mathcal{A}^{(d)}})$ is the universal quadruple as desired. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01O1. Beware of the difference between the letter 'O' and the digit '0'.