The Stacks project

Definition 31.32.1. Let $X$ be a scheme. Let $\mathcal{I} \subset \mathcal{O}_ X$ be a quasi-coherent sheaf of ideals, and let $Z \subset X$ be the closed subscheme corresponding to $\mathcal{I}$, see Schemes, Definition 26.10.2. The blowing up of $X$ along $Z$, or the blowing up of $X$ in the ideal sheaf $\mathcal{I}$ is the morphism

\[ b : \underline{\text{Proj}}_ X \left(\bigoplus \nolimits _{n \geq 0} \mathcal{I}^ n\right) \longrightarrow X \]

The exceptional divisor of the blowup is the inverse image $b^{-1}(Z)$. Sometimes $Z$ is called the center of the blowup.


Comments (0)

There are also:

  • 7 comment(s) on Section 31.32: Blowing up

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01OG. Beware of the difference between the letter 'O' and the digit '0'.