Definition 28.3.1. Let $X$ be a scheme. We say $X$ is integral if it is nonempty and for every nonempty affine open $\mathop{\mathrm{Spec}}(R) = U \subset X$ the ring $R$ is an integral domain.
Definition 28.3.1. Let $X$ be a scheme. We say $X$ is integral if it is nonempty and for every nonempty affine open $\mathop{\mathrm{Spec}}(R) = U \subset X$ the ring $R$ is an integral domain.
Comments (0)
There are also: