Definition 28.4.1. Let $P$ be a property of rings. We say that $P$ is *local* if the following hold:

For any ring $R$, and any $f \in R$ we have $P(R) \Rightarrow P(R_ f)$.

For any ring $R$, and $f_ i \in R$ such that $(f_1, \ldots , f_ n) = R$ then $\forall i, P(R_{f_ i}) \Rightarrow P(R)$.

## Comments (0)