Lemma 28.26.2. Let X be a scheme. Let \mathcal{L} be an invertible \mathcal{O}_ X-module. Let n \geq 1. Then \mathcal{L} is ample if and only if \mathcal{L}^{\otimes n} is ample.
[II Proposition 4.5.6(i), EGA]
Lemma 28.26.2. Let X be a scheme. Let \mathcal{L} be an invertible \mathcal{O}_ X-module. Let n \geq 1. Then \mathcal{L} is ample if and only if \mathcal{L}^{\otimes n} is ample.
Proof. This follows from the fact that X_{s^ n} = X_ s. \square
Comments (2)
Comment #2692 by Matt Stevenson on
Comment #2721 by Takumi Murayama on
There are also: