The Stacks project

Lemma 27.26.4. Let $X$ be a scheme. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Let $s \in \Gamma (X, \mathcal{L})$. For any affine $U \subset X$ the intersection $U \cap X_ s$ is affine.

Proof. This translates into the following algebra problem. Let $R$ be a ring. Let $N$ be an invertible $R$-module (i.e., locally free of rank 1). Let $s \in N$ be an element. Then $U = \{ \mathfrak p \mid s \not\in \mathfrak p N\} $ is an affine open subset of $\mathop{\mathrm{Spec}}(R)$. This you can see as follows. Think of $s$ as an $R$-module map $R \to N$. This gives rise to $R$-module maps $N^{\otimes k} \to N^{\otimes k + 1}$. Consider

\[ R' = \mathop{\mathrm{colim}}\nolimits _ n N^{\otimes n} \]

with transition maps as above. Define an $R$-algebra structure on $R'$ by the rule $x \cdot y = x \otimes y \in N^{\otimes n + m}$ if $x \in N^{\otimes n}$ and $y \in N^{\otimes m}$. We claim that $\mathop{\mathrm{Spec}}(R') \to \mathop{\mathrm{Spec}}(R)$ is an open immersion with image $U$.

To prove this is a local question on $\mathop{\mathrm{Spec}}(R)$. Let $\mathfrak p \in \mathop{\mathrm{Spec}}(R)$. Pick $f \in R$, $f \not\in \mathfrak p$ such that $N_ f \cong R_ f$ as a module. Replacing $R$ by $R_ f$, $N$ by $N_ f$ and $R'$ by $R'_ f = \mathop{\mathrm{colim}}\nolimits N_ f^{\otimes n}$ we may assume that $N \cong R$. Say $N = R$. In this case $s$ is an element of $R$ and it is easy to see that $R' \cong R_ s$. Thus the lemma follows. $\square$

Comments (2)

Comment #3508 by Yicheng Zhou on

By using direction (2) to (1) of Lemma 28.11.3, one can give a more schematic proof as follows. By hypothesis we have locally , therefore the open immersion is locally given by a principal open set (in an affine neighborhood). By the lemma cited, is affine, therfore is affine whenever is affine.

Comment #3548 by on

This works, but in the Stacks project we never give forward references to avoid circular arguments. Since this lemma is stated before the lemma about affine morphisms you mention, we cannot use that lemma in its proof.

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01PV. Beware of the difference between the letter 'O' and the digit '0'.