Lemma 27.28.2. In Situation 27.28.1. The canonical morphism $f : X \to Y$ maps $X$ into the open subscheme $W = W_1 \subset Y$ where $\mathcal{O}_ Y(1)$ is invertible and where all multiplication maps $\mathcal{O}_ Y(n) \otimes _{\mathcal{O}_ Y} \mathcal{O}_ Y(m) \to \mathcal{O}_ Y(n + m)$ are isomorphisms (see Constructions, Lemma 26.10.4). Moreover, the maps $f^*\mathcal{O}_ Y(n) \to \mathcal{L}^{\otimes n}$ are all isomorphisms.

**Proof.**
By Proposition 27.26.13 there exists an integer $n_0$ such that $\mathcal{L}^{\otimes n}$ is globally generated for all $n \geq n_0$. Let $x \in X$ be a point. By the above we can find $a \in S_{n_0}$ and $b \in S_{n_0 + 1}$ such that $a$ and $b$ do not vanish at $x$. Hence $f(x) \in D_{+}(a) \cap D_{+}(b) = D_{+}(ab)$. By Constructions, Lemma 26.10.4 we see that $f(x) \in W_1$ as desired. By Constructions, Lemma 26.14.1 which was used in the construction of the map $f$ the maps $f^*\mathcal{O}_ Y(n_0) \to \mathcal{L}^{\otimes n_0}$ and $f^*\mathcal{O}_ Y(n_0 + 1) \to \mathcal{L}^{\otimes n_0 + 1}$ are isomorphisms in a neighbourhood of $x$. By compatibility with the algebra structure and the fact that $f$ maps into $W$ we conclude all the maps $f^*\mathcal{O}_ Y(n) \to \mathcal{L}^{\otimes n}$ are isomorphisms in a neighbourhood of $x$. Hence we win.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)