Lemma 29.7.10. Let S be a scheme. Let X, Y be schemes over S. Let f, g : X \to Y be morphisms of schemes over S. Let U \subset X be an open subscheme such that f|_ U = g|_ U. If the scheme theoretic closure of U in X is X and Y \to S is separated, then f = g.
Proof. Follows from the definitions and Schemes, Lemma 26.21.5. \square
Comments (0)