Processing math: 100%

The Stacks project

Definition 29.49.1. Let X, Y be schemes.

  1. Let f : U \to Y, g : V \to Y be morphisms of schemes defined on dense open subsets U, V of X. We say that f is equivalent to g if f|_ W = g|_ W for some W \subset U \cap V dense open in X.

  2. A rational map from X to Y is an equivalence class for the equivalence relation defined in (1).

  3. If X, Y are schemes over a base scheme S we say that a rational map from X to Y is an S-rational map from X to Y if there exists a representative f : U \to Y of the equivalence class which is an S-morphism.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.