Processing math: 100%

The Stacks project

Lemma 29.49.5. Let X be a scheme with finitely many irreducible components X_1, \ldots , X_ n. If \eta _ i \in X_ i is the generic point, then

R(X) = \mathcal{O}_{X, \eta _1} \times \ldots \times \mathcal{O}_{X, \eta _ n}

If X is reduced this is equal to \prod \kappa (\eta _ i). If X is integral then R(X) = \mathcal{O}_{X, \eta } = \kappa (\eta ) is a field.

Proof. Let U \subset X be an open dense subset. Then U_ i = (U \cap X_ i) \setminus (\bigcup _{j \not= i} X_ j) is nonempty open as it contained \eta _ i, contained in X_ i, and \bigcup U_ i \subset U \subset X is dense. Thus the identification in the lemma comes from the string of equalities

\begin{align*} R(X) & = \mathop{\mathrm{colim}}\nolimits _{U \subset X\text{ open dense}} \mathop{\mathrm{Mor}}\nolimits (U, \mathbf{A}^1_\mathbf {Z}) \\ & = \mathop{\mathrm{colim}}\nolimits _{U \subset X\text{ open dense}} \mathcal{O}_ X(U) \\ & = \mathop{\mathrm{colim}}\nolimits _{\eta _ i \in U_ i \subset X\text{ open}} \prod \mathcal{O}_ X(U_ i) \\ & = \prod \mathop{\mathrm{colim}}\nolimits _{\eta _ i \in U_ i \subset X\text{ open}} \mathcal{O}_ X(U_ i) \\ & = \prod \mathcal{O}_{X, \eta _ i} \end{align*}

where the second equality is Schemes, Example 26.15.2. The final statement follows from Algebra, Lemma 10.25.1. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.