Lemma 29.11.6. Let $f : X \to S$ be an affine morphism of schemes. Let $\mathcal{A} = f_*\mathcal{O}_ X$. The functor $\mathcal{F} \mapsto f_*\mathcal{F}$ induces an equivalence of categories
\[ \left\{ \begin{matrix} \text{category of quasi-coherent}
\\ \mathcal{O}_ X\text{-modules}
\end{matrix} \right\} \longrightarrow \left\{ \begin{matrix} \text{category of quasi-coherent}
\\ \mathcal{A}\text{-modules}
\end{matrix} \right\} \]
Moreover, an $\mathcal{A}$-module is quasi-coherent as an $\mathcal{O}_ S$-module if and only if it is quasi-coherent as an $\mathcal{A}$-module.
Comments (0)
There are also: