Definition 29.14.1. Let $P$ be a property of ring maps.

We say that $P$ is

*local*if the following hold:For any ring map $R \to A$, and any $f \in R$ we have $P(R \to A) \Rightarrow P(R_ f \to A_ f)$.

For any rings $R$, $A$, any $f \in R$, $a\in A$, and any ring map $R_ f \to A$ we have $P(R_ f \to A) \Rightarrow P(R \to A_ a)$.

For any ring map $R \to A$, and $a_ i \in A$ such that $(a_1, \ldots , a_ n) = A$ then $\forall i, P(R \to A_{a_ i}) \Rightarrow P(R \to A)$.

We say that $P$ is

*stable under base change*if for any ring maps $R \to A$, $R \to R'$ we have $P(R \to A) \Rightarrow P(R' \to R' \otimes _ R A)$.We say that $P$ is

*stable under composition*if for any ring maps $A \to B$, $B \to C$ we have $P(A \to B) \wedge P(B \to C) \Rightarrow P(A \to C)$.

## Comments (0)