The Stacks project

[II Definition 6.2.3, EGA]

Definition 29.20.1. Let $f : X \to S$ be a morphism of schemes.

  1. We say that $f$ is quasi-finite at a point $x \in X$ if there exist an affine neighbourhood $\mathop{\mathrm{Spec}}(A) = U \subset X$ of $x$ and an affine open $\mathop{\mathrm{Spec}}(R) = V \subset S$ such that $f(U) \subset V$, the ring map $R \to A$ is of finite type, and $R \to A$ is quasi-finite at the prime of $A$ corresponding to $x$ (see above).

  2. We say $f$ is locally quasi-finite if $f$ is quasi-finite at every point $x$ of $X$.

  3. We say that $f$ is quasi-finite if $f$ is of finite type and every point $x$ is an isolated point of its fibre.


Comments (4)

Comment #2714 by Ariyan Javanpeykar on

A reference: This definition is made in EGA II, Definition 6.2.3

Comment #10278 by Jaehyeon Lee on

I think the definition of 'quasi-finite at x' does not come from EGA II (6.2.3).

Corollarie ([EGA II, (6.2.2)]) Soit un morphisme de type fini. Les conditions suivantes sont équivalentes : 1. Tout point est isolé dans sa fibre (autrement dit le sous-espace est discret). 2. Pour tout , le préschéma est un -préschéma fini. 3. Pour tout , l’anneau est un -module quasi‑fini.

Definition ([EGA II, (6.2.3)]) Lorsque est un morphisme de type fini vérifiant les conditions équivalentes de (6.2.2), on dit que est quasi-fini, ou que est quasi-fini sur .

I believe the correct reference is [EGA I, 2nd edition, Definition 6.11.3] ((6.11.2) of [EGA I, 2nd edition] is the same as (6.2.2) of [EGA II])

Definition ([EGA I 2nd edition, (6.11.3)]) Lorsque est un morphisme de type fini vérifiant les conditions équivalentes de (6.11.2), on dit que est quasi-fini, ou que est quasi-fini sur . On dit qu'un morphisme est quasi-fini en un point s'il existe un voisinage ouvert affine de et un voisinage ouvert affine de tels que , et que le morphisme , restriction de , soit quasi-fini. On dit qu'un morphisme est localement quasi-fini (ou que est localement quasi-fini sur ) s'il est quasi-fini en tout point de .

Comment #10664 by on

Yes,OK, but the refence does work for the notion of a quasi-finite morphism. So I am going to leave as is.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01TD. Beware of the difference between the letter 'O' and the digit '0'.