The Stacks project

Definition 29.21.1. Let $f : X \to S$ be a morphism of schemes.

  1. We say that $f$ is of finite presentation at $x \in X$ if there exists an affine open neighbourhood $\mathop{\mathrm{Spec}}(A) = U \subset X$ of $x$ and affine open $\mathop{\mathrm{Spec}}(R) = V \subset S$ with $f(U) \subset V$ such that the induced ring map $R \to A$ is of finite presentation.

  2. We say that $f$ is locally of finite presentation if it is of finite presentation at every point of $X$.

  3. We say that $f$ is of finite presentation if it is locally of finite presentation, quasi-compact and quasi-separated.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01TP. Beware of the difference between the letter 'O' and the digit '0'.