Lemma 29.30.9. Let $k$ be a field. Let $X$ be a scheme locally of finite type over $k$. The following are equivalent:
$X$ is a local complete intersection over $k$,
for every $x \in X$ there exists an affine open $U = \mathop{\mathrm{Spec}}(R) \subset X$ neighbourhood of $x$ such that $R \cong k[x_1, \ldots , x_ n]/(f_1, \ldots , f_ c)$ is a global complete intersection over $k$, and
for every $x \in X$ the local ring $\mathcal{O}_{X, x}$ is a complete intersection over $k$.
Comments (0)