The Stacks project

Definition 17.27.1. Let $X$ be a topological space. Let $\varphi : \mathcal{O}_1 \to \mathcal{O}_2$ be a homomorphism of sheaves of rings. Let $\mathcal{F}$ be an $\mathcal{O}_2$-module. A $\mathcal{O}_1$-derivation or more precisely a $\varphi $-derivation into $\mathcal{F}$ is a map $D : \mathcal{O}_2 \to \mathcal{F}$ which is additive, annihilates the image of $\mathcal{O}_1 \to \mathcal{O}_2$, and satisfies the Leibniz rule

\[ D(ab) = aD(b) + D(a)b \]

for all $a, b$ local sections of $\mathcal{O}_2$ (wherever they are both defined). We denote $\text{Der}_{\mathcal{O}_1}(\mathcal{O}_2, \mathcal{F})$ the set of $\varphi $-derivations into $\mathcal{F}$.


Comments (2)

Comment #1814 by Keenan Kidwell on

To be clear, this definition can equivalently be formulated as follows: an -derivation is a map of abelian sheaves on such that, for each open subset of , is a -derivation of into in the sense of 10.131.1, right?

There are also:

  • 2 comment(s) on Section 17.27: Modules of differentials

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01UN. Beware of the difference between the letter 'O' and the digit '0'.