Definition 29.37.1. Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. We say $\mathcal{L}$ is *relatively ample*, or *$f$-relatively ample*, or *ample on $X/S$*, or *$f$-ample* if $f : X \to S$ is quasi-compact, and if for every affine open $V \subset S$ the restriction of $\mathcal{L}$ to the open subscheme $f^{-1}(V)$ of $X$ is ample.

[II Definition 4.6.1, EGA]

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (3)

Comment #2699 by Matt Stevenson on

Comment #2738 by Takumi Murayama on

Comment #2841 by Johan on

There are also: