The Stacks project

Lemma 28.42.11. Let $f : X \to S$ be a morphism of schemes. The following are equivalent

  1. $f$ is finite, and

  2. $f$ is affine and proper.

Proof. This follows formally from Lemma 28.42.7, the fact that a finite morphism is integral and separated, the fact that a proper morphism is the same thing as a finite type, separated, universally closed morphism, and the fact that an integral morphism of finite type is finite (Lemma 28.42.4). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01WN. Beware of the difference between the letter 'O' and the digit '0'.