Lemma 30.17.4. Let X be a scheme. Let \mathcal{L} be an invertible \mathcal{O}_ X-module. Let s \in \Gamma (X, \mathcal{L}) be a section. Assume that
X is quasi-compact and quasi-separated, and
X_ s is affine.
Then for every quasi-coherent \mathcal{O}_ X-module \mathcal{F} and every p > 0 and all \xi \in H^ p(X, \mathcal{F}) there exists an n \geq 0 such that s^ n\xi = 0 in H^ p(X, \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n}).
Comments (0)