Lemma 32.4.3. Let $S = \mathop{\mathrm{lim}}\nolimits S_ i$ be the limit of a directed inverse system of schemes with affine transition morphisms (Lemma 32.2.2). If all the schemes $S_ i$ are nonempty and quasi-compact, then the limit $S = \mathop{\mathrm{lim}}\nolimits _ i S_ i$ is nonempty.

**Proof.**
Choose $0 \in I$. Note that $I$ is nonempty as the limit is directed. Choose an affine open covering $S_0 = \bigcup _{j = 1, \ldots , m} U_ j$. Since $I$ is directed there exists a $j \in \{ 1, \ldots , m\} $ such that $f_{i0}^{-1}(U_ j) \not= \emptyset $ for all $i \geq 0$. Hence $\mathop{\mathrm{lim}}\nolimits _{i \geq 0} f_{i0}^{-1}(U_ j)$ is not empty since a directed colimit of nonzero rings is nonzero (because $1 \not= 0$). As $\mathop{\mathrm{lim}}\nolimits _{i \geq 0} f_{i0}^{-1}(U_ j)$ is an open subscheme of the limit we win.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)