Definition 34.3.7. Let $S$ be a scheme. Let $\mathit{Sch}_{Zar}$ be a big Zariski site containing $S$.

The

*big Zariski site of $S$*, denoted $(\mathit{Sch}/S)_{Zar}$, is the site $\mathit{Sch}_{Zar}/S$ introduced in Sites, Section 7.25.The

*small Zariski site of $S$*, which we denote $S_{Zar}$, is the full subcategory of $(\mathit{Sch}/S)_{Zar}$ whose objects are those $U/S$ such that $U \to S$ is an open immersion. A covering of $S_{Zar}$ is any covering $\{ U_ i \to U\} $ of $(\mathit{Sch}/S)_{Zar}$ with $U \in \mathop{\mathrm{Ob}}\nolimits (S_{Zar})$.The

*big affine Zariski site of $S$*, denoted $(\textit{Aff}/S)_{Zar}$, is the full subcategory of $(\mathit{Sch}/S)_{Zar}$ whose objects are affine $U/S$. A covering of $(\textit{Aff}/S)_{Zar}$ is any covering $\{ U_ i \to U\} $ of $(\mathit{Sch}/S)_{Zar}$ which is a standard Zariski covering.

## Comments (0)